Chapter 9: Covalent Bonding: Orbitals

9.1: Hybridization and the Localized Electron Model

- **<u>Hybridization</u>**: the combining of orbitals of different atomic subshells into new orbitals. - the new hybridized orbitals tend to have minimized energy levels.
- **Effective Electron Pairs**: the number of pairs of electrons including lone pairs and bonding pairs (however, multiple bonds are counted as one bonding pair).
- <u>Sigma (σ) Bond</u>: a bonding electron pair localized in the area centred along a line between the two nuclei.
- <u>Pi (π) Bond</u>: a bonding pair that utilizes a *p* orbital that is not involved in the hybridization process.
 it exists away from the centred line between the two nuclei.

3 Steps to Describe using the Localized Electron Model

- 1. Write the Lewis Structures and Account for Minimization of Formal Charges.
- 2. Using the VSEPR model, determine the electron pairs arrangement.
- 3. State the type of hybrid atomic orbital for all bonding and lone pairs.

Different Types of Hybridization

(Check out this website: http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/hybrv18.swf)

1. <u>sp³ Hybridization</u>: - characterized by <u>4 effective electron pairs</u> where one s and three p orbitals are mixed.

- possible orbital shapes around the atom involved are tetrahedral, trigono pyramid, V-shape, and linear.
- all bonding electron pairs form σ bonds.
- bond angles can be 109.5°, 107°, 104.5° and 180°.

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Example 1: Describe the bonding of H₂O using the LE model.

a. Lewis Structure and Formal Charges:

b. VSEPR model:

H₂O is <u>V-shape</u> because of 4 effective e^- pairs around oxygen with two lone pairs and 2 bonding pair. Due to two lone pair repulsions, <u>bond angle is 105°</u>.

c. State the type hybrid orbitals

All e^- pairs around the oxygen atom have $2sp^3$ orbitals. Both hydrogen atoms have 1s orbitals.

- 2. <u>*sp*² Hybridization</u>: characterized by <u>3 effective electron pairs</u> where one *s* and two *p* orbitals are mixed. One set of *p* orbital remains unmixed and becomes the π bond.
 - orbital shapes around the atom involved are trigono planar and linear.
 - there is at least one bonding electron pair that is a σ bond, one other bonding pair is a π bond. (together they make a double bond)
 - the notable exception is boron compounds. Boron has 3 valance electrons. Even with sp^2 hybridization (due to the trigono planar geometry), there are no electrons in the unmixed *p* orbital. Thus, no π bond and no double bond.

3 Effective *e*⁻ Pairs (for lone pairs or σ bonds)

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Example 2: Describe the bonding of O₂ using the LE model.

a. Lewis Structure and Formal Charge:

$$O = O$$
 Minimizes Formal Charge
 $O = 6 - 4 - \frac{1}{2}(4) = 0$

b. VSEPR model:

O₂ is <u>linear</u> because of 3 effective e^- pairs around oxygen with 2 lone pairs and 1 bonding pair. Due to the single bonding pair (σ and π bonds) between two nuclei, the <u>bond angle is 180°</u>.

c. State the type hybrid orbitals

All lone pairs and the σ bond around both oxygen atoms are $2sp^2$ orbitals. The $2p_z$ orbitals situate above and below the axis of the σ bond become the π bond. Together, they form a double bond as predicted in the Lewis structure.

- 3. <u>sp Hybridization</u>: characterized by <u>2 effective electron pairs</u> where one s and one p orbitals are mixed. Two sets of p orbitals remain unmixed and become two π bonds.
 - orbital shape around the atom involved is linear.
 - at least one bonding electron pair is a σ bond, two other bonding pairs are π bonds. (together they make a triple bond or two double bonds)
 - the notable exception is beryllium compounds. Be has 2 valance electrons. Even with *sp* hybridization (due to the linear geometry), there is no electrons in the two unmixed *p* orbitals. Thus, no π bonds and no triple bond.
 bond angles are 180°.

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Example 3: Describe the bonding of CO₂ using the LE model.

a. Lewis Structure and Formal Charge:

Minimize Formal Charges

$$C = 4 - 0 - \frac{1}{2}(8) = 0$$

 $O = 6 - 4 - \frac{1}{2}(4) = 0$

b. VSEPR model:

CO₂ is <u>linear</u> because of 2 effective e^- pairs around the central carbon with no lone pairs and 2 bonding pair. Due to the two double bonds between the three nuclei, the <u>bond</u> <u>angle is 180°</u>. c. State the type hybrid orbitals

The 2*sp* orbital form the bonds on the left and right side of the carbon atom form the two σ bonds. All lone pairs and the σ bond around both oxygen atoms are $2sp^2$ orbitals. The $2p_z$ orbitals situate above and below the axis of the σ bond become the one of the two π bonds. The other π bond comes from the $2p_y$ orbital into and out of the page. Together, they form two double bonds as predicted in the Lewis structure.

- 4. $\underline{dsp^3 \text{ Hybridization}}$: characterized by 5 effective electron pairs where one *s*, three *p* and one *d* orbitals are mixed.
 - possible orbital shapes around the atom involved are trigono bipyramid, see-saw, T-shape, and linear.
 - all bonding electron pairs are σ bonds.
 - bond angles can be 120° and 90°, or 180°.

Example 4: Describe the bonding of PF₅ using the LE model.

a. Lewis Structure and Formal Charge:

b. VSEPR model:

PF₅ is <u>trigono bipyramid</u> because of 5 effective e^- pairs around the central phosphorus atom with no lone pairs and 5 bonding pair. Due to these five bonding pairs, the <u>bond angles are 120° and 90°</u>.

c. State the type hybrid orbitals

All e^{-} pairs around the phosphorus atom have $3dsp^{3}$ orbitals, and all five fluorine atoms have $2sp^{3}$ orbitals. There are a total of 5 sigma bonds. Each composes of an overlapping between these $3dsp^{3}$ and $2sp^{3}$ orbitals.

5. $\underline{d^2sp^3}$ Hybridization: - characterized by <u>6 effective electron pairs</u> where one *s* and two *p* orbitals are mixed.

- possible orbital shapes around the atom involved are octahedral, square pyramid and square planar.
- all bonding electron pairs are σ bonds.
- bond angles are 90°.

Example 5: Describe the bonding of XeF₄ using the LE model.

a. Lewis Structure and Formal Charge:

F Minimize Formal Charges

$$Xe = 8 - 4 - \frac{1}{2}(8) = 0$$

F - Xe - F F F - $7 - 6 - \frac{1}{2}(2) = 0$

b. VSEPR model:

XeF₅ is <u>square planar</u> because of 6 effective e^- pairs around the central xenon atom with two lone pairs and 4 bonding pair. Due to these four bonding pairs bonding pairs, the <u>bond</u> angles are 90°.

c. State the type hybrid orbitals

All e^- pairs around the xenon atom have $5d^2sp^3$ orbitals, and all four fluorine atoms have $2sp^3$ orbitals. There are a total of 4 σ bonds and 2 lone pairs. Each sigma bond composes of an overlapping between these $5d^2sp^3$ and $2sp^3$ orbitals.

> <u>Assignment</u> 9.1 pg.441 – 442 #11 to 14, 19 to 23