AP Chemistry Lab #3

Lab #3: Gravimetric and Solution Stoichiometry

Objectives:

- 1. To accurately determine the mass of the precipitate in a precipitation reaction.
- 2. To accurately determine the concentration of a solution using titration.

Hypothesis / Pre-lab Exercise:

1. Write the balanced molecular equation, complete ionic equation, and the net-ionic equation for the reaction between $CuSO_{4\,(aq)}$ and $KOH_{(aq)}$.

2. Write the balanced molecular equation for the neutralization of $H_2SO_{4(aq)}$ with NaOH $_{(aq)}$

Materials:

Ring Stand Two 150 mL Beakers $CuSO_{4(aq)}(0.75 \text{ M})$ – from Lab #2

Iron Ring Three 250 mL Beakers $KOH_{(s)}$ (1.44 g)

Funnel Buret $H_2SO_{4(aq)}(0.018 \text{ M})$ – from Lab #2 Filter Paper Watch Glass and Masking Tape NaOH $_{(aq)}$ (unknown concentration) Scoopula Buret Funnel and Buret Clamp Bromothymol Blue Indicator

Stirring Rod 3 Small / Medium Erlenmeyer Flasks Distilled Water Volumetric Flasks Two 10 mL Pipets Electronic Balance

Procedure:

A. Precipitation Reaction:

- 1. Coat the inside of a 10 mL pipet at least twice with the 0.75 M of CuSO_{4 (aq)} from the volumetric flask as prepared in Lab #2.
- 2. Measure out 20.0 mL of 0.75 M CuSO_{4 (aq)}. Transfer it into a 150 mL beaker.
- 3. Set another 150 mL beaker on the electronic balance and set it to zero.
- 4. Measure out approximately 1.44 g of KOH (s). Record the actual mass of KOH (s) used.
- 5. Completely Dissolve the KOH_(s) with approximately 20 mL of water
- 6. Transfer the CuSO_{4 (aq)} into the small beaker containing KOH_(aq). Use the distilled water bottle, wash the CuSO_{4 (s)} beaker thoroughly and transfer all washed solution into the KOH_(aq) beaker. Record any qualitative observations.
- 7. Set up the filtration apparatus using the ring stand, ring, funnel and a medium size beaker.
- 8. Fold a correct size filter paper for the funnel and measure the mass of the filter paper.
- 9. Place the folded filter paper into the funnel. Wet the paper so it sticks inside the funnel.
- 10. Carefully filter the mixture from step 6 using a stirring rod. Be sure to wash the beaker out thoroughly.
- 11. Label your name on a watch glass using a masking tape.
- 12. Carefully take out the filter paper from the funnel. Open it up and place it on the watch glass to dry. Wait at least a whole day until it's completely dry. Measure and record the mass of the filter paper and precipitate without the watch glass.

B. Acid and Base Titration:

- 1. Coat the 10 mL pipet with the NaOH (aq) at least twice and discard the wash fluid in a 250 mL beaker labeled as "Waste".
- 2. Pipet 10 mL of NaOH $_{(aq)}$ to each of the three Erlenmeyer flasks.
- 3. To each Erlenmeyer flask, add a few drops of bromothymol blue indictor.
- 4. Coat the buret with the 0.0180 M of $\text{H}_2\text{SO}_{4\,(aq)}$ from the volumetric flask (as prepared in Lab #2) at least twice, and discard the wash fluid in the "waste" beaker.
- 5. Set up the titration apparatus with the ring stand, buret clamp, buret and buret funnel.
- 6. Fill the buret with the 0.0180 M of H_2SO_4 (aq) using the buret funnel. Be sure not to pass the 0 mL mark.
- 7. Record the starting volume of the H₂SO_{4 (aq)}. Begin titration of the unknown concentration of NaOH (aq). Swirl the Erlenmeyer flask when adding the H₂SO_{4 (aq)}. The endpoint will be a green color. Record the final volume of the H₂SO_{4 (aq)} added. Calculate the net volume of acid added. (If the solution becomes yellow, you have added too much H₂SO_{4 (aq)}. Record the volume and the color anyway).
- 8. Repeat Step 7 twice with the other two Erlenmeyer flasks. Be sure to record the initial and final volume of the buret each time. Try to adjust the buret valve in such a way so H₂SO_{4 (aq)} is added one drop at a time around the endpoint.

AP Chemistry Lab #3

Observations:

Part A: Precipitation Reaction:

Turi transferencion recuccion.	
Actual Mass of KOH used	
Mass of Dry Filter Paper	
Mass of Dry Filter Paper and Precipitate	
Observation(s) of the Precipitate formed	

Part B: Acid and Base Titration:

10.0 mL of NaOH (aq) titrated by 0.0180 mol/L of H ₂ SO _{4 (aq)}			
	Trial 1	Trial 2	Trial 3
Initial Volume			
Final Volume			
Volume of H ₂ SO ₄ added			
Bromothymol Blue Colour			

Analysis:

Part A: Precipitation Reaction:

- 1. Determine the experimental mass of the precipitate.
- 2. Calculate the theoretical mass of precipitate formed when 20.0 mL of 0.75 mol/L of CuSO_{4 (aq)} is reacted with the mass of KOH (s) used.
- 3. Calculate the concentration of the ions for the filtrate (assuming all the reactants are transferred completely into the beaker and no washing fluid is needed).

Part B: Acid and Base Titration:

1. Determine the experimental concentration of NaOH $_{(aq)}$.

Evaluation:

Part A: Precipitation Reaction:

- 1. Calculate the % error of the precipitate and comment on the possible reasons for the errors.
- 2. Predict and explain what would happen to the experimental mass of the precipitate if the beaker containing $CuSO_{4(aq)}$ did not get washed out with distilled water.
- 3. Why is it unnecessary to calculate the concentration of $KOH_{(aq)}$ used to find the theoretical mass of the precipitate form?
- 4. Research on the Internet the type of hydrate the precipitate formed (Search phrase: "decomposition of 'name of precipitate'"). Devise a new lab procedure that will verify the molecular formula of this hydrate. Perform the lab and write a formal lab report of your finding.

Part B: Acid and Base Titration:

- 1. Predict and explain what would happen to the calculated [NaOH_(aq)] when there is/are
 - a. distilled water left in the Erlenmeyer flask when NaOH $_{(aq)}$ is transferred.
 - b. distilled water left in the pipet when NaOH $_{(aq)}$ is transferred to the Erlenmeyer flask.
 - c. air bubbles in the pipet when NaOH (aq) is transferred to the Erlenmeyer flask.
 - d. distilled water left in the buret when H₂SO_{4 (aq)} is added.
 - e. air bubbles in the buret when H_2SO_4 (aq) is added.
- 2. The approximate theoretical concentration of NaOH $_{(aq)}$ is 0.0540 M. Compare your calculated [NaOH $_{(aq)}$] with this theoretical concentration by determining the % error. What are the possible sources of error?

Conclusion:

- 1. Accounting for the % errors, what would you do to improve the procedures of this lab?
- 2. Summarize what you have learned from this lab.