Chemistry AP Unit 3 Outline: States of Matter

Chapter 5: Gases

Classes	Topics	Suggested Reading	✓	Assignments	✓
1	Pressure, Barometer, Manometer, Units of Pressure (mm Hg, torr, standard atmosphere, kPa), Boyle's Law $(P_1V_1 = P_2V_2)$, Charles Law $\left(\frac{V_1}{T_1} = \frac{V_2}{T_2}\right)$, Gay-Lussac Law $\left(\frac{P_1}{T_1} = \frac{P_2}{T_2}\right)$, Avogadro's Law	5.1: Pressure (pg. 190 to 192)5.2: The Gas Laws of Boyle, Charles, Guy-Lussac, Avogadro and the Combined Gas Law (pg. 192 to 198)		pg. 232–233 #25 to 27, 29 pg. 233 #31 to 34	
	$\left(\frac{V_1}{n_1} = \frac{V_2}{n_2}\right)$, Combined Gas Law $\left(\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}\right)$				
2	Ideal Gas Law ($PV = nRT$), Gas Constant ($R = 0.08206$ L atm mol ⁻¹ K ⁻¹), Molar Volume (L/mol), STP (22.4 L/mol) and SATP (24.8 L/mol), Gas Stoichiometry, Limiting and Excess Reagent, and Combined Stoichiometry, Molar Mass of a Gas	5.3: The Ideal Gas Law (pg. 199 to 202) 5.4: Gas Stoichiometry (pg. 203 to 206)		pg. 233–234 #35 to 45, 47 pg. 234–235 #49 to 62	
3	Partial Pressure, Dalton's Law of Partial Pressure ($P_{\text{total}} = P_A + P_B + P_C +$), Mole Fraction $\left(\chi_A = \frac{n_A}{n_{total}} = \frac{P_A}{P_{total}}\right)$, Kinetic Molecular	5.5: Dalton's Law of Partial Pressures(pg. 206 to 211)5.6: The Kinetic Molecular Theory (pg. 212 to 219)		pg. 235 #63 to 71 pg. 235–236 #73 to 80	
	Theory (KMT) $\begin{pmatrix} E_k \\ mol = \frac{3}{2}RT \end{pmatrix} \begin{pmatrix} E_k \\ molecule = \frac{1}{2}mv^2 \end{pmatrix}$, Temperature, Boltzman's Constant (k = 1.38 × 10 ⁻²³ J/K), Root Mean				
	Square Velocity $\left(u_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3kT}{m}}\right)$				
4	Diffusion, Effusion, Graham's Law of Effusion $\left(\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}\right)$,	5.7: Effusion and Diffusion (pg. 219 to 222) 5.8: Real Gases (pg. 222 to 224)		pg. 236 #81 to 84 pg. 236 #85 and 86	
	Real Gas, van der Waals Equation $\left[\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT\right]$				
5	Lab #6: Ideal Gas Law (November 14, Tuesday)			Lab #6 Report (Nov 20, Tuesday)	
6	Chapter 5 Quiz (November 12, Monday)				

Chapter 10: Liquids and Solids

Classes	Topics	Suggested Reading	✓	Assignments	✓
1	Condensed States, Intermolecular Forces, Dipole-Dipole Forces, Hydrogen Bonding, London Dispersion Forces, Surface Tension, Capillary Actions (Cohesive and Adhesive Forces), Viscosity	10.1: Intermolecular Forces (pg. 449 to 453) 10.2: The Liquid State (pg. 454 to 456)		pg. 500–501 #35 to 40 pg. 501 #41 to 44	
2	Crystalline Solids, Amorphous Solids, Lattice, Unit Cell, X-ray Diffraction, Types of Crystalline Solids (Ionic, Molecular and Atomic Solids) and their properties. Various Atomic Solids (Metals and Alloy, Metalloids-Network Structure, and Solid Group (VIIIA) Elements),	 10.3: An Introduction to Structures and Types of Solids (pg. 456 to 461) 10.4: Structure and Bonding in Metals (pg. 461 to 468) 10.5: Network Atomic Solids (pg. 468 to 473) 10.6: Molecular Solids (pg. 478 to 479) 10.7: Ionic Solids (pg. 479 to 483) 		pg. 502–503 #67, 68	
3	Vaporization (Evaporation), Heat (Enthalpy) of Vaporization (ΔH_{vap}), Condensation, Equilibrium, Vapour Pressure, Equilibrium Vapour Pressure, ($P_{atm} = P_{vap} + P_{Hg}$), Clausius-Clapeyron Equation $\left[\ln(P_{vap}) = -\frac{\Delta H_{vap}}{R} \left(\frac{1}{T}\right) + C \right] \text{ or}$	10.8: Vapour Pressure and Change of State (pg. 483 to 492)		pg. 504 #75 to 81	
	$\left[\ln \left(\frac{P_{vap,T_1}}{P_{vap,T_2}} \right) = \frac{\Delta H_{vap}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \right], \text{ Sublimation, Heating Curve,}$ Heat (Enthalpy) of Fusion (ΔH_{fus}), Normal Melting and Freezing Points, Supercooled and Superheated States				
4	Phase Diagram, Triple Point, Critical Temperature and Pressure, Critical Point	10.9: Phase Diagram (pg. 492 to 497)		pg. 505 #87 to 89	
5	Lab #7: Molecular Mass of a Volatile Liquid (November 30, Friday)			Lab #7 Report (December 7, Wed)	
6	Chapter 10 Quiz (December 3, Monday)				

Chapter 11: Properties of Solutions

Classes	Topics	Suggested Reading	✓	Assignments	✓
1	Molarity (M) or Molar Concentration (C) (in mol/L), Mass Percent	11.1: Solution Composition (pg. 512 to 515)		pg. 548 #25 to 32	
	$\left(\text{mass \%} = \frac{m_{\text{solute}}}{m_{\text{solvent}}} \times 100\% \right), \text{ Mole Fraction} \left(\chi_A = \frac{n_A}{n_{total}} \right), \text{ Molality}$	11.2: The Energies of Solution Formation (pg. 515 to 519)		pg. 548 #33 to 35, 37 to 39	
	$(\text{unit} = m) = \frac{n_{\text{solute}}}{m_{\text{solvent}}(kg)}$, Parts per Million (ppm), Parts per Billion (ppb),				
	Normality, Heat of Solution (ΔH_{soln}), Heat of Hydration (ΔH_{hyd})				
2	Factors Affecting Solubility (Molecular Structure, Pressure – Henry's Law $C = kP$, Temperature), Vapour Pressure of Solution, Raoult's Law ($P_{aoln} =$	11.3: Factors Affecting Solubility (pg. 519 to 524)		pg. 549 #41, 43 and 44	
	$\chi_{\text{solvent}} P^{\circ}_{\text{solvent}}$, Ideal Solutions ($P_{\text{total}} = \chi_A P^{\circ}_A + \chi_B P^{\circ}_B +$), Nonideal Solutions (Positive and Negative Deviations)	11.4: The Vapour Pressures of Solutions (pg. 524 to 531)		pg. 549–550 #45 to 49, 51, 53, 55, and 56	
3	Colligative Properties, Molal Boiling Point Constant (K_b), Boiling Point Elevation of Nonelectrolytes ($\Delta T_b = K_b \times \text{Molality}$), Molal Boiling Point Constant (K_f), Freezing Point Depression of Nonelectrolytes ($\Delta T_f = K_f \times \text{Molality}$), Semipermeable Membrane, Osmosis, Osmotic Pressure of Nonelectrolytes ($\Pi = CRT = \frac{nRT}{V}$), Molar Mass Determination from	11.5: Boiling Point Elevation and Freezing Point Depression(pg. 531 to 534)11.6: Osmotic Pressure(pg. 535 to 540)		pg. 550 #57 to 64 pg. 550 #65 to 67	
	Osmotic Pressure, Dialysis, Isotonic Solutions, Reverse Osmosis, Desalination				
4	van't Hoff Factor $\left(i = \frac{n_{ions}}{n_{solute}}\right)$, Ion Pairing, Colligative Properties of	11.7: Colligative Properties of Electrolyte Solution (pg. 540 to 543)		pg. 550–551 #68 to 75	
	Electrolytes [Boiling Point Elevation of Ionic Solution ($\Delta T_b = iK_b \times \text{Molality}$),				
	Freezing Point Depression of Ionic Solution ($\Delta T_f = iK_f \times \text{Molality}$), Osmotic				
	Pressure for Ionic Solution $\left(\Pi = iCRT = i\frac{nRT}{V}\right)$				
5	Unit 3 Test (December 11, Tuesday)				