Chemistry AP Unit 5 Outline: Chemical Kinetics and Equilibria

Chapter 12: Chemical Kinetics

Classes	Topics	Suggested Reading	✓	Assignments	✓
1	Chemical Kinetics, Irreversible Reaction, Reaction Rate $\begin{pmatrix} Rate = \Delta[A] \\ \Delta t \end{pmatrix}$, Instantaneous Rate, Rate Law or Differential Rate Law (<i>Rate</i> = <i>k</i> [A] ^{<i>n</i>}), Rate Constant (<i>k</i>), Order (<i>n</i>), Integrated Rate Law, Initial Rates, Overall Reaction Order	 12.1: Reaction Rates (pg. 555 to 561) 12.2: Rate Laws: An Introduction (pg. 561 to 563) 12.3 Determining the Form of the Rate Law (pg. 563 to 567) 		pg. 598 #17 and 18 pg. 598–599 #19 to 26	
2	Integrated Rate Laws, $(1^{st}, 2^{nd}, \text{ and zero orders})$, First-Order Rate Laws $(\ln [A] = -kt + \ln [A]_0 \text{ or } \ln \left(\frac{[A]_0}{[A]}\right) = kt)$, Half Life of First Order Reaction $\left(t_{1/2} = \frac{\ln(2)}{k}\right)$, Second-Order Rate Laws $\left(\frac{1}{[A]} = kt + \frac{1}{[A]_0}\right)$, Half Life of Second Order Reaction $\left(t_{1/2} = \frac{1}{k[A]_0}\right)$, Zero Order Rate Laws ([A] = $-kt + [A]_0$), Half Life of Zero Rate Laws $\left(t_{1/2} = \frac{[A]_0}{2k}\right)$, Pseudo-First-Order Rate Law	12.4: The Integrated Rate Law (pg. 568 to 578)		pg. 599–601 #27 to 44	
3	Reaction Mechanism, Intermediate, Elementary Step, Molecularity, Unimolecular, Bimolecular, Termolecular Steps, Rate-Determining Step	12.5: Rate Laws: A Summary (pg. 578 to 79) 12.6: Reaction Mechanisms (pg. 579 to 582)		pg. 601–602 #45 to 48	
4	Collision Model, Activation Energy, Activated Complex (Transition State), Molecular Orientations, Steric Factor, Arrhenius Equation, Frequency Factor, Enzymes, Catalyst, Homogeneous Catalyst, Heterogeneous Catalyst, Adsorption, Desorption	12.7: A Model of Chemical Kinetics (pg. 582 to 588) 12.8: Catalysis (pg. 588 to 595)		pg. 602 #49 to 58 pg. 603 #61 and 62	
5	Lab #10: Chemical Kinetics (February 27, Wednesday)			Lab Report #10 Due: March 18, Tuesday	
6	Chapter 12 Quiz (February 28, Thursday)				

Chapter 13: Chemical Equilibrium

Classes	Topics	Suggested Reading	<	Assignments	✓
1	Chemical Equilibrium, Properties of Chemical Equilibrium,	13.1: The Equilibrium Condition (pg. 609 to 613)		pg. 645 #15 and 17	
	Law of Mass Action, Equilibrium Expression, Equilibrium	13.2: The Equilibrium Constant (pg. 613 to 617)		pg. 645–646 #19 to 26	
	Constant (K or K_C), Equilibrium Position,				
2	Equilibrium Expressions of Partial Pressures (K_P) ,	13.3: Equilibrium Expressions Involving Pressures		pg. 646 #27 and 30	
	Homogeneous Equilibria, Heterogeneous Equilibria	(pg. 617 to 620)			
		13.4: Heterogeneous Equilibria (pg. 620 to 622)		pg. 646 #31 to 34	
3	Applications of Equilibrium (The Extent of a Reaction, Reaction	13.5: Applications of Equilibrium Constant (pg. 622		pg. 646 #35 to 46	
	Quotient, Q, Calculating Equilibrium Pressures and	to 631)			
	Concentrations – ICE Box)				
4	Special Cases: Treating Systems that have Small Equilibrium	13.6: Solving Equilibrium Problems (pg. 631 to 636)		pg. 647-648 #47 to 56	
	Constants, Le Châtelier's Principle (Effects of a Change in	13.7: Le Châtelier's Principle (pg. 636 to 642)		pg. 648–649#57 to 64	
	Concentration, Pressure, and Temperature)				
5	Free Energy and Pressures and Equilibrium ($\Delta G = \Delta G^{\circ} + RT \ln$	16.7: The Dependence of Free Energy on Pressure		pg. 821 #51 and 52	
	(Q) and $\Delta G^{\circ} = -RT \ln (K)$, $w_{\text{max}} = \Delta G$, Reversible and	(pg. 806 to 810)			
	Irreversible Processes	16.8: Free Energy and Equilibrium (pg. 810 to 814)		pg. 821–822 #53 to 61	
		16.9: Free Energy and Work (pg. 814 to 816)			
6	Lab #11: Determination of Equilibrium Constant			Lab Report #11 Due:	
	(March 10, Monday)			March 18, Tuesday	
7	Unit 5 Test (March 18, Tuesday)				