Unit 5: CHEMICAL KINETICS AND EQUILIBRIA

Chapter 13: Chemical Kinetics

13.1: The Rate of a Reaction

Chemical Kinetics: - the branch of chemistry that studies the how fast reaction proceeds.
Reaction Rates: - the speed of which the concentration of a reactant or product changes per unit of time.

- unit is in $\mathrm{mol} /(\mathrm{L} \bullet s)$ or $\mathrm{mol} /(\mathrm{L} \bullet \mathrm{min})$

$$
\text { Rate }=\frac{\Delta[\mathrm{A}]}{\Delta t}=\frac{\text { Concentration A at } t_{2}-\text { Concentration A at } t_{1}}{t_{2}-t_{1}}
$$

Average Rate: - like average speed, it is the change in concentration per interval of time.
Instantaneous Rate: - like instantaneous speed, it is the change in concentration at a particular time.
Example 1: The concentrations of the reactant and product of the reaction, $\mathrm{A} \rightarrow 2 \mathrm{~B}$, are recorded below.
a. Determine the average reaction rates for each time interval.
b. Graph concentrations versus time for both reactant and product.
c. Find the instantaneous reaction rates of reactant A at 20 seconds and product B at 40 seconds.

Time (seconds)	Reactant $[\mathbf{A}]$	Product $[\mathrm{B}]$
0	0.1	0
20	0.05	0.1
40	0.025	0.15
60	0.0125	0.175
80	0.0063	0.1875
100	0.0031	0.1938

a. Average Reaction Rates
(Note: Reactant Rate is Negative because A is consumed.)

Time Intervals (seconds)	Reactant Rate $=\frac{\Delta[\mathbf{A}]}{\Delta t}(\mathrm{~mol} /(\mathrm{L} \bullet \mathbf{s})$	Product Rate $=\frac{\Delta[\mathbf{B}]}{\Delta t}(\mathrm{~mol} /(\mathrm{L} \bullet \mathrm{s})$
0.00 to 20.00	$\frac{(0.05-0.1) \mathrm{mol} / \mathrm{L}}{(20.00-0.00) \mathrm{s}}=-0.002500$	$\frac{(0.1-0) \mathrm{mol} / \mathrm{L}}{(20.00-0.00) \mathrm{s}}=0.005000$
20.00 to 40.00	$\frac{(0.025-0.05) \mathrm{mol} / \mathrm{L}}{(40.00-20.00) \mathrm{s}}=-0.001250$	$\frac{(0.15-0.1) \mathrm{mol} / \mathrm{L}}{(40.00-20.00) \mathrm{s}}=0.002500$
40.00 to 60.00	$\frac{(0.0125-0.025) \mathrm{mol} / \mathrm{L}}{(60.00-40.00) \mathrm{s}}=-0.000625$	$\frac{(0.175-0.15) \mathrm{mol} / \mathrm{L}}{(60.00-40.00) \mathrm{s}}=0.001250$
60.00 to 80.00	$\frac{(0.0063-0.0125) \mathrm{mol} / \mathrm{L}}{(80.00-60.00) \mathrm{s}}=-0.000310$	$\frac{(0.1875-0.175) \mathrm{mol} / \mathrm{L}}{(80.00-60.00) \mathrm{s}}=0.000625$
80.00 to 100.00	$\frac{(0.0031-0.0063) \mathrm{mol} / \mathrm{L}}{(100.00-80.00) \mathrm{s}}=-0.000160$	$\frac{(0.1938-0.1875) \mathrm{mol} / \mathrm{L}}{(100.00-80.00) \mathrm{s}}=0.000315$

b. Concentrations versus Time Graph.

c. Instantaneous Rates

$$
\begin{aligned}
& \text { Reactant Rate }=\frac{\Delta[\mathrm{A}]}{\Delta t}=\frac{-0.06 \mathrm{~mol} / \mathrm{L}}{28 \mathrm{~s}} \\
& \text { Product Rate }=\frac{\Delta[\mathrm{B}]}{\Delta t}=\frac{0.06 \mathrm{~mol} / \mathrm{L}}{32 \mathrm{~s}}
\end{aligned}
$$

Determining Rates Using Pressure

If a reaction starts from a solid or a liquid were to generate a gas, we can determine the rate of the reaction by measuring pressures instead of concentrations at various times. Consider the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2 \text { (I) }}$

$$
2 \mathrm{H}_{2} \mathrm{O}_{2(l)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{O}_{2(\mathrm{~g})}
$$

We can measures the pressure of $\mathrm{O}_{2(\mathrm{~g})}$ generated to find the rate by using the Ideal Gas Law, $P V=n R T$.

$$
\begin{gathered}
P=\frac{n}{V} R T \rightarrow P_{\text {oxygen }}=\left[\mathrm{O}_{2}\right] R T \quad \rightarrow \quad\left[\mathrm{O}_{2}\right]=\frac{P_{\mathrm{O}_{2}}}{R T} \\
\text { Rate }=\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=\frac{1}{R T}\left(\frac{\Delta P_{\mathrm{O}_{2}}}{\Delta t}\right)
\end{gathered}
$$

Rate Constant (k): - a constant of proportionality between reaction rate and the concentration of reactant.

- as the concentration of reactant increases, the reaction rate increases due to more chances for collisions to occur between reactants and hence the speed of the reaction increases. However, rate constant will remain the same.
- the unit of the rate constant depends on the overall order of the reaction (explains in next section).

For a reaction: $\quad \mathbf{A} \rightarrow \mathbf{B}$

$$
\begin{array}{ccc}
\text { Rate }=k[\mathrm{~A}] & \text { Rate }=k P_{\mathrm{A}} \\
k=\text { rate constant } & k=\frac{\text { Rate }}{[\mathrm{A}]} \quad k=\frac{\text { Rate }}{P_{\mathrm{A}}}
\end{array}
$$

(Note: Both reaction rates are positive because they are net consumption rates.) (The Rate Equation can follow many different form - more explanations in the next section)

Example 2: Dinitrogen pentaoxide decomposes into nitrogen dioxide and oxygen gases as follows.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(g)}
$$

An experiment was conducted at different initial concentrations and the rate after 1.00 minute was calculated from the final concentration as shown below. Determine the rate constant of this reaction.

	Initial $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$	Rate $(\mathrm{mol} / \mathrm{L} \bullet \mathrm{s})$
Trial 1	$0.100 \mathrm{~mol} / \mathrm{L}$	2.3×10^{-4}
Trial 2	$0.050 \mathrm{~mol} / \mathrm{L}$	1.2×10^{-4}
Trial 3	$0.025 \mathrm{~mol} / \mathrm{L}$	5.9×10^{-5}

Trial 1: $\quad \boldsymbol{k}_{\mathbf{1}}=\frac{\text { Rate }_{1}}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{0,1}}=\frac{2.3 \times 10^{-4} \mathrm{mel} /(\mathrm{E} \bullet \mathrm{s})}{0.100 \mathrm{mel} / \mathrm{E}} \quad \boldsymbol{k}_{\mathbf{1}}=\mathbf{2 . 3} \times \mathbf{1 0}^{-\mathbf{3}} \mathrm{s}^{-\mathbf{1}}$
Trial 2: $\left.\boldsymbol{k}_{2}=\frac{\text { Rate }_{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{0,2}}=\frac{1.2 \times 10^{-4} \mathrm{mel} /(\mathrm{L} \bullet \mathrm{s})}{0.050 \mathrm{mel} / \mathrm{L}} \quad \boldsymbol{k}_{2}=\mathbf{2 . 4} \times \mathbf{1 0}^{-\mathbf{3}} \mathrm{s}^{-1}\right\} \boldsymbol{k}_{\mathrm{avg}}=\mathbf{2 . 4} \times \mathbf{1 0 ^ { - 3 }} \mathrm{s}^{-1}$
Trial 3: $\boldsymbol{k}_{1}=\frac{\text { Rate }_{3}}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{0,3}}=\frac{5.9 \times 10^{-4} \mathrm{mel} /(\mathrm{E} \bullet \mathrm{s})}{0.025 \mathrm{mel} / \mathrm{E}} \quad \boldsymbol{k}_{3}=2.4 \times 10^{-\mathbf{3}} \mathrm{s}^{\mathbf{- 1}}$
Note that the $k_{1} \approx k_{2} \approx k_{3}$. For other reactions, k would be calculated in a similar but slightly different way depending on the order of the reaction (explains in next section).

Relationship between Molar Quantities and Reaction Rates

For any chemical equation, $a \mathrm{~A}+b \mathrm{~B} \rightarrow c \mathrm{C}+d \mathrm{D}$,

$$
\text { Rate }=-\frac{1}{a} \frac{\Delta[\mathrm{~A}]}{\Delta t}=-\frac{1}{b} \frac{\Delta[\mathrm{~B}]}{\Delta t}=\frac{1}{c} \frac{\Delta[\mathrm{C}]}{\Delta t}=\frac{1}{d} \frac{\Delta[\mathrm{D}]}{\Delta t}
$$

Example 3: For the reaction $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NCl}_{3(\mathrm{~g})}$, what is the rate of consumption of N_{2} and Cl_{2} if the rate of production of NCl_{3} is $0.453 \mathrm{~mol} /(\mathrm{L} \bullet \mathrm{s})$?
Rate of $\mathrm{N}_{2}=\frac{\Delta\left[\mathrm{N}_{2}\right]}{\Delta t}-\frac{\Delta\left[\mathrm{N}_{2}\right]}{\Delta t}=-\frac{1}{3} \frac{\Delta\left[\mathrm{Cl}_{2}\right]}{\Delta t}=\frac{1}{2} \frac{\Delta\left[\mathrm{NCl}_{3}\right]}{\Delta t}$
Rate of $\mathrm{Cl}_{2}=\frac{\Delta\left[\mathrm{Cl}_{2}\right]}{\Delta t} \quad \frac{\Delta\left[\mathrm{~N}_{2}\right]}{\Delta t}=-\frac{1}{2} \frac{\Delta\left[\mathrm{NCl}_{3}\right]}{\Delta t}=-\frac{1}{2}(0.453 \mathrm{~mol} /(\mathrm{L} \bullet \mathrm{s})) \quad$ Rate of $\mathbf{N}_{\mathbf{2}}=\mathbf{0 . 2 2 7} \mathrm{mol} /(\mathrm{L} \bullet \mathbf{s})$
Rate of $\mathrm{NCl}_{3}=\frac{\Delta\left[\mathrm{NCl}_{3}\right]}{\Delta t} \frac{\Delta t}{\Delta\left[\mathrm{Cl}_{2}\right]} \Delta t=-\frac{3}{2} \frac{\Delta\left[\mathrm{NCl}_{3}\right]}{\Delta t}=-\frac{3}{2}\left(0.453 \mathrm{~mol} /(\mathrm{L} \cdot \mathrm{s}) \quad\right.$ Rate of $\mathbf{C l}_{\mathbf{2}}=\mathbf{0 . 6 8 0} \mathbf{m o l} /(\mathrm{L} \cdot \mathrm{s}$

Assignment

Page 246.

13.2: The Rate Law

Rate Law: - a reaction rate where it is depended solely on the concentrations of the reactants with the assumption that it is an irreversible reaction.

Two Kinds of Rate Laws:

1. Differential Rate Law: - sometimes called rate law, which relates the reaction rate on reactants' concentrations only.
2. Integrated Rate Law: - the rate law that relates the concentration of the chemical species with time.

- it is derived by integrating the differential rate law with respect of concentration and time (explains in the next section).

Order (\boldsymbol{n}): - the rational exponent of the reactant's concentration in the rate law as determined by experimentation. (It is NOT the coefficient of the chemicals.)

> Rate Laws Single Reactant: $\quad \begin{aligned} & \text { Rate }=k[\mathrm{~A}]^{n} \\ & \text { Multiple Reactants: } \\ & \text { Rate }=k[\mathrm{~A}]^{n}[\mathrm{~B}]^{m}\end{aligned}$ $k=$ rate constant $\quad n$ and $m=$ order of a particular reactant (Note: Both reaction rates are positive because they are net consumption rates.)

Overall Rate Order: - the sum of all orders of all reactants.
Example 1: For the following rate laws, determine their overall rate order and the unit of the rate constant.
a. \quad Rate $=k[\mathrm{~A}]$
b. Rate $=k[\mathrm{~A}]^{2}$
$\boldsymbol{n}=1$ (First order)

$$
k=\frac{\text { Rate }}{[\mathrm{A}]}=\frac{\mathrm{mel} /(\mathrm{L} \bullet \mathrm{~s})}{\mathrm{mol} / \mathrm{E}}=\mathrm{s}^{-1}
$$

$$
n=2 \text { (Second order) }
$$

$$
k=\frac{\text { Rate }}{[\mathrm{A}]^{2}}=\frac{\mathrm{mel} /(\mathrm{L} \bullet \mathrm{~s})}{(\mathrm{mol} / \mathrm{L})^{2}}=\mathbf{L} /(\mathrm{mol} \bullet \mathrm{~s})
$$

$$
\begin{aligned}
\text { c. } \text { Rate } & =k[\mathrm{~A}][\mathrm{B}] \\
\qquad \boldsymbol{n} & +\boldsymbol{m}=\mathbf{1}+\mathbf{1}=\mathbf{2}
\end{aligned}
$$

(Second order)

$$
\begin{aligned}
& k=\frac{\text { Rate }}{[\mathrm{A}][\mathrm{B}]}=\frac{\mathrm{mol} /(\mathrm{L} \bullet \mathrm{~s})}{(\mathrm{mol} / \mathrm{L})^{2}} \\
& \boldsymbol{k}=\mathbf{L} /(\mathrm{mol} \bullet \mathbf{s})
\end{aligned}
$$

d. Rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$
$n+m=2+1=3$
(Third order)

$$
\begin{aligned}
& k=\frac{\text { Rate }}{[\mathrm{A}]^{2}[\mathrm{~B}]}=\frac{\mathrm{mot} /(\mathrm{E} \bullet \mathrm{~s})}{(\mathrm{mol} / \mathrm{L})^{2}(\mathrm{mel} / \mathrm{L})} \\
& k=\mathbf{L}^{2} /\left(\mathrm{mol}^{2} \bullet \mathbf{s}\right)
\end{aligned}
$$

Initial Rate ($[\mathbf{A}]_{0}$): - the instantaneous reaction rate at the beginning instant $(t=0)$ of the reaction.

- for a single reactant, its order can be found by the instantaneous reaction rates and its concentrations at two different times.

Determining Rate Law of a Single Reactant using Instantaneous Rates

$$
\frac{\text { Rate } 2}{\text { Rate } 1}=\frac{\boldsymbol{k}[\mathbf{A}]_{t_{2}}^{n}}{\boldsymbol{k}[\mathbf{A}]_{t_{1}}^{n}}=\left(\frac{[\mathbf{A}]_{t_{2}}}{[\mathbf{A}]_{t_{1}}}\right)^{n}
$$

Example 2: The decomposition of acetaldehyde (ethanal) at 298 K yields the following kinetic data.

$$
\mathrm{CH}_{3} \mathrm{CHO}_{(g)} \rightarrow \mathrm{CH}_{4(g)}+\mathrm{CO}_{(g)}
$$

Time (seconds)	$\left[\mathbf{C H}_{\mathbf{3}} \mathbf{C H O}{ }_{(\mathbf{g})} \mathbf{(m o l} / \mathbf{L}\right)$	Instantaneous Rate $(\mathbf{m o l} /(\mathbf{L} \bullet \mathbf{s}))$
0.000	0.400	1.4
0.095	0.300	0.79
0.286	0.200	0.35
0.857	0.100	0.088

a. Determine the rate law and the rate constant.
b. Graph the concentration versus time plot for the decomposition of $\mathrm{CH}_{3} \mathrm{CHO}_{(g)}$.
c. Calculate the reaction rate when the concentration of acetaldehyde is $0.250 \mathrm{~mol} / \mathrm{L}$.
a. To find Rate Law, pick any two concentrations To calculate the Rate Constant, pick any one of and rates

$$
\frac{\text { Rate } 2}{\text { Rate } 1}=\frac{k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]_{0, t_{2}}^{n}}{k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]_{0, t_{1}}^{n}} \quad \frac{0.79}{1.4}=\frac{k(0.300)^{n}}{k(0.400)^{n}}
$$

$$
0.5642857143=(0.75)^{n}
$$

$$
\log (0.5642857143)=n \log (0.75)
$$

$$
\log (0.5642857143)=
$$

$$
\log (0.75)
$$

$$
n=1.98898237 \approx 2
$$

$$
\text { Rate }=k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{2} \quad\left(\text { Overall } 2^{\text {nd }} \text { Order }\right)
$$

b. Concentration versus Time Graph

the concentrations and rates.

$$
\begin{aligned}
\text { Rate } & =k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{2} \\
1.4 & =k(0.400 \mathrm{~mol} / \mathrm{L})^{2}
\end{aligned}
$$

$$
\frac{1.4 \mathrm{mel} /(\mathrm{L} \bullet \mathrm{~s})}{(0.400 \mathrm{~mol} / \mathrm{L})^{2}}=k
$$

$$
\begin{gathered}
k=8.75 \mathrm{~L} /(\mathrm{mol} \bullet \mathrm{~s}) \\
\text { Rate }=(8.75 \mathrm{~L} /(\mathrm{mol} \bullet \mathrm{~s}))\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{2}
\end{gathered}
$$

(The negative sign in k is dropped because we know reactant rate is one of consumption.)
c. When $\left[\mathrm{CH}_{3} \mathrm{CHO}_{(\mathrm{g})}\right]=0.250 \mathrm{~mol} / \mathrm{L}$,

$$
\begin{aligned}
& \text { Rate }=(8.75 \mathrm{~L} /(\mathrm{mol} \bullet \mathrm{~s}))\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{2} \\
& \text { Rate }=(8.75 \mathrm{E} /(\mathrm{mol} \bullet \mathrm{~s}))(0.250)^{2} \mathrm{~mol}^{z} / \mathrm{L}^{z}
\end{aligned}
$$

Method of Initial Rates: - the use of initial rate(s) to determine the overall rate order of the reaction.

- for x number of reactants, we will need at least $(x+1)$ number of experiments with various initial rates and initial concentrations.
- the order of a particular reactant is determined by dividing the initial rates of the two experiments with different initial concentrations of that particular reactant, while having the same initial concentrations of other reactants.

Determining Rate Law of Multiple Reactants using Initial Rates

$\frac{\text { Rate } 2}{\text { Rate } 1}=\frac{k[\mathbf{A}]_{0, \text { exp } 2}^{n}[\mathbf{B}]_{\theta, \text { exp } 2}^{m}}{\boldsymbol{k}[\mathbf{A}]_{0, \text { exp } 1}^{n}[\mathbf{B}]_{\theta, \text { exp } 1}^{m}}=\left(\frac{[\mathbf{A}]_{0, \text { exp } 2}}{[\mathbf{A}]_{0, \text { exp } 1}}\right)^{n}$ where $[\mathbf{B}]_{0, \exp 1}=[\mathbf{B}]_{0, \exp 2}$
$\frac{\text { Rate } 3}{\text { Rate } 1}=\frac{\boldsymbol{k}[\mathbf{A}]_{0, \text { exp } 3}^{n}[\mathbf{B}]_{0, \text { exp } 3}^{m}}{\boldsymbol{k}[\mathbf{A}]_{\theta, \text { exp } 1}^{m}[\mathbf{B}]_{0, \text { exp } 1}^{m}}=\left(\frac{[\mathbf{B}]_{0, \text { exp } 3}}{[\mathbf{B}]_{0, \text { exp } 1}}\right)^{m}$ where $[\mathbf{A}]_{0, \text { exp } 3}=[\mathbf{A}]_{0, \text { exp } 1}$

Example 3: The formation of nitrogen dioxide from the combustion of nitrogen monoxide at 660 K gives the following kinetic data. Determine the rate law and the rate constant.

$$
2 \mathrm{NO}_{(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{2(g)}
$$

Experiment	$\left[\mathbf{N O}_{(\mathrm{g})}\right](\mathrm{mol} / \mathrm{L})$	$\left[\mathbf{O}_{2(\mathrm{~g})}\right](\mathrm{mol} / \mathrm{L})$	Measured Initial Rate $(\mathrm{mol} /(\mathrm{L} \bullet \mathbf{s}))$
1	0.010	0.010	2.5×10^{-5}
2	0.020	0.010	1.0×10^{-4}
3	0.010	0.020	5.0×10^{-5}

To find Rate Law, we first have to pick the two concentrations and rates where [O_{2}] stays constant.

$$
\begin{array}{rlrl}
\frac{\text { Rate } 2}{\text { Rate } 1}=\frac{k[\mathrm{NO}]_{0, \text { exp } 2}^{n}\left[\mathrm{O}_{2}\right]_{0, \text { exp } 2}^{m}}{k[\mathrm{NO}]_{0, \text { exp } 1}^{n}\left[\mathrm{O}_{2}\right]_{0, \text { exp } 1}^{m}} & \frac{1.0 \times 10^{-4}}{2.5 \times 10^{-5}} & =\frac{k(0.020 \mathrm{mel} / \mathrm{L})^{n}(\theta . \theta 1 \theta \mathrm{mel} / \mathrm{L})^{m}}{k(0.010 \mathrm{mel} / \mathrm{L})^{n}(\theta . \theta 1 \theta \mathrm{mel} / \notin)^{m}} \\
4 & =(2)^{n} & \mathbf{n}=\mathbf{2}
\end{array}
$$

Then, we have to pick the two concentrations and rates where [NO] stays constant.

$$
\begin{aligned}
\frac{\text { Rate } 3}{\text { Rate } 1}=\frac{k[\mathrm{NO}]_{0, \text { exp } 3}^{n}\left[\mathrm{O}_{2}\right]_{0, \text { exp } 3}^{m}}{k[\mathrm{NO}]_{0, \text { exp } 1}^{n}\left[\mathrm{O}_{2}\right]_{0, \text { exp } 1}^{m}} & \frac{5.0 \times 10^{-5}}{2.5 \times 10^{-5}}=\frac{k(\theta . \theta 1 \theta \mathrm{mel} / \mathrm{E})^{n}(0.020 \mathrm{mel} / \mathrm{E})^{m}}{k(\theta . \theta 1 \theta \mathrm{~mol} / \mathrm{E})^{n}(0.010 \mathrm{~mol} / \mathrm{E})^{m}} \\
2 & =(2)^{m} \\
\text { Rate }=\boldsymbol{k}[\mathbf{N O}]^{2}\left[\mathrm{O}_{2}\right] & \left(\text { Overall } 3^{\text {rd }} \text { Order }\right)
\end{aligned}
$$

To calculate the Rate Constant, we can pick the concentration and rate from any experiment.

\[

\]

$$
\text { Rate }=\left(25 \mathrm{~L}^{2} /\left(\mathrm{mol}^{2} \bullet \mathrm{~s}\right)\right)\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.
$$

Example 4: The reaction rate of the acetone iodination not only depends on the concentrations of the reactants, but it also relates to the concentration of the $\mathrm{H}_{(\text {aq) }}^{+}$ion. The rate law has a format of Rate $=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]^{n}\left[\mathrm{I}_{2}\right]^{m}\left[\mathrm{H}^{+}\right]^{p}$. Several experiments were done at 298 K and the initial rates of the reaction are measured. Using the data below, find the final rate law and the rate constant.

$$
\mathrm{CH}_{3} \mathrm{COCH}_{3(a q)}+\mathrm{I}_{2(a q)} \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{I}_{(a q)}+\mathrm{H}_{(a q)}^{+}+\mathrm{I}_{(a q)}^{-}
$$

Experiment	$\left[\mathbf{C H}_{\mathbf{3}} \mathbf{C O C H}_{\mathbf{3}(a q)}\right]$	$\left[\mathbf{I}_{\mathbf{2}(a q)}\right]$	$\left[\mathbf{H}^{+}{ }_{(a q)}\right]$	Measured Initial Rate $(\mathbf{m o l} /(\mathrm{L} \bullet \mathbf{s}))$
1	$0.80 \mathrm{~mol} / \mathrm{L}$	$0.001 \mathrm{~mol} / \mathrm{L}$	$0.20 \mathrm{~mol} / \mathrm{L}$	4.2×10^{-6}
2	$1.6 \mathrm{~mol} / \mathrm{L}$	$0.001 \mathrm{~mol} / \mathrm{L}$	$0.20 \mathrm{~mol} / \mathrm{L}$	8.4×10^{-6}
3	$0.80 \mathrm{~mol} / \mathrm{L}$	$0.001 \mathrm{~mol} / \mathrm{L}$	$0.40 \mathrm{~mol} / \mathrm{L}$	8.4×10^{-6}
4	$0.80 \mathrm{~mol} / \mathrm{L}$	$0.0005 \mathrm{~mol} / \mathrm{L}$	$0.20 \mathrm{~mol} / \mathrm{L}$	4.2×10^{-6}

To find Rate Law, we first have to pick the two concentrations and rates where $\left[\mathrm{I}_{2}\right]$ and $\left[\mathrm{H}^{+}\right]$stay constant.
$\frac{\text { Rate 2 }}{\text { Rate 1 }}=\frac{k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]_{0, \text { exp } 2}^{n}\left[\mathrm{I}_{2}\right]_{0, \text { exp } 2}^{m}\left[\mathrm{H}^{+}\right]_{0, \exp 2}^{p}}{k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]_{0, \text { exp } 1}^{n}\left[\mathrm{I}_{2}\right]_{0, \text { exp } 1}^{m}\left[\mathrm{H}^{+}\right]_{0, \exp 1}^{p}}=\frac{8.4 \times 10^{-6}}{4.2 \times 10^{-6}}=\frac{k(1.6 \mathrm{mel} / \mathrm{E})^{n}(\theta . \theta \theta 1 \mathrm{mel} / \notin)^{m}(\theta .2 \theta \mathrm{mel} / \mathrm{E})^{p}}{k(0.80 \mathrm{~mol} / \mathrm{E})^{n}(\theta . \theta \theta 1 \mathrm{~mol} / \mathrm{E})^{m}(\theta .2 \theta \mathrm{~mol} / \mathrm{E})^{p}}$

$$
2=(2)^{n}
$$

$$
n=1
$$

To find Rate Law, we first have to pick the two concentrations and rates where $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$ and $\left[\mathrm{H}^{+}\right]$ stay constant.
$\frac{\text { Rate } 4}{\text { Rate } 1}=\frac{k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]_{0, \text { exp } 4}^{n}\left[\mathrm{I}_{2}\right]_{0, \text { exp } 4}^{m}\left[\mathrm{H}^{+}\right]_{0, \text { exp } 4}^{p}}{k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]_{0, \text { exp } 1}^{n}\left[\mathrm{I}_{2}\right]_{0, \text { exp } 1}^{m}\left[\mathrm{H}^{+}\right]_{0, \text { exp } 1}^{p}}=\frac{4.2 \times 10^{-6}}{4.2 \times 10^{-6}}=\frac{k(\theta .8 \theta \mathrm{mel} / \notin)^{n}(0.0005 \mathrm{mel} / \not)^{m}(\theta .2 \theta \mathrm{mel} / \mathrm{E})^{p}}{k(\theta .8 \theta \mathrm{mel} / \pm)^{n}(0.001 \mathrm{mel} / \mathrm{E})^{m}(\theta .2 \theta \mathrm{mel} / \mathrm{E})^{p}}$

$$
1=(0.5)^{m} \quad \boldsymbol{m}=\mathbf{0}
$$

To find Rate Law, we first have to pick the two concentrations and rates where [I_{2}] and $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right.$] stay constant.
$\frac{\text { Rate } 3}{\text { Rate 1 }}=\frac{k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]_{0, \text { exp }}^{n}\left[\mathrm{I}_{2}\right]_{0, \text { exp } 3}^{m}\left[\mathrm{H}^{+}\right]_{0, \text { exp } 3}^{p}}{k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]_{0, \text { exp } 1}^{n}\left[\mathrm{I}_{2}\right]_{0, \text { exp } 1}^{m}\left[\mathrm{H}^{+}\right]_{0, \text { exp } 1}^{p}}=\frac{8.4 \times 10^{-6}}{4.2 \times 10^{-6}}=\frac{k(\theta .8 \theta \mathrm{mel} / \mathrm{L})^{p}(\theta . \theta \theta 1 \mathrm{mel} / \mathrm{L})^{m}(0.40 \mathrm{mel} / \mathrm{L})^{p}}{k(\theta .80 \mathrm{mel} / \mathrm{L})^{p}(\theta . \theta \theta 1 \mathrm{mel} / \mathrm{L})^{m}(0.20 \mathrm{mel} / \mathrm{L})^{p}}$

$$
2=(2)^{p} \quad p=1
$$

$$
\text { Rate }=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]^{1}\left[\mathrm{I}_{2}\right]^{0}\left[\mathrm{H}^{+}\right]^{1}
$$

$$
\text { Rate }=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right] \quad\left(\text { Overall } 2^{\text {nd }} \text { Order }\right)
$$

To calculate the Rate Constant, we can pick the concentration and rate from any experiment.

$$
\begin{aligned}
\text { Rate } & =k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right] \\
4.2 \times 10^{-6} \mathrm{~mol} /(\mathrm{L} \bullet \mathrm{~s}) & =k(0.80 \mathrm{~mol} / \mathrm{L})(0.20 \mathrm{~mol} / \mathrm{L}) \\
\frac{4.2 \times 10^{-6} \mathrm{mel} /(\mathrm{E} \bullet \mathrm{~s})}{(0.80 \mathrm{~mol} / \mathrm{L})(0.20 \mathrm{mel} / \mathrm{L})} & =k
\end{aligned}
$$

$$
k=2.625 \times 10^{-5} \mathrm{~L} /(\mathrm{mol} \bullet \mathrm{~s})
$$

Assignment

13.2 pg. 589-590 \#9 to 22; pg. 593-594 \#72 and 87

Page 250.
Copyrighted by Gabriel Tang B.Ed., B.Sc.

13.3: The Relationship Between Reactant Concentration and Time (Integrated Rate Law)

1. Integrated First-Order Rate Law for Single Reactant

$$
\begin{aligned}
& \text { Rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}] \text { (Starting from First-Order Rate Law) } \\
& \frac{1}{[\mathrm{~A}]} \Delta[\mathrm{A}]=-k \Delta t \text { (Rearrange Equation for Integration) } \\
& \int_{[\mathrm{A}]_{0}}^{[\mathrm{A}]} \frac{1}{[\mathrm{~A}]} d[\mathrm{~A}]=-k \int_{0}^{t} d t \\
& \ln [\mathbf{A}]-\ln [\mathbf{A}]_{0}=-\boldsymbol{k} t \\
&\left(\Delta t=d t \text { and } \Delta[\mathrm{A}]=d[\mathrm{~A}] ; \text { Integrate Both Sides: } \int \frac{1}{x} d x=\ln x\right) \\
& \ln \left(\frac{[\mathbf{A}]}{[\mathbf{A}]_{0}}\right)=-\boldsymbol{k t} \longleftrightarrow \text { (Integrated First Order Rate Laws - Two Versions) }
\end{aligned}
$$

Graphing Integrated First-Order Rate Law for Single Reactant

If $\underline{\ln [\mathbf{A}] \text { versus } t \text { graph is a linear relation, then it is a First Order Reaction }}$ with $-k=$ slope and $\ln [A]_{0}=y$-intercept.

Half-Life ($(1 / 2)$: - the amount of time it takes to half the original reactant's concentration.

- at half-life, $t_{1 / 2}$, the reactant's concentration is $1 / 2[\mathrm{~A}]_{0}=[\mathrm{A}]$:

$$
\begin{array}{rlr}
\ln \left(\frac{[\mathrm{A}]}{[\mathrm{A}]_{0}}\right)=-\boldsymbol{k t} \Rightarrow \ln \left(\frac{\left(\frac{1}{2}[\mathrm{~A}]_{\theta}\right)}{[\mathrm{A}]_{\theta}}\right)=-k t_{1 / 2} & \Rightarrow \ln (1 / 2)=-k t_{1 / 2} \quad(\text { Since } \ln (1 / 2)=-\ln (2)) \\
& \Rightarrow \ln (2)=k t_{1 / 2} \quad t_{1 / 2}=\frac{\ln \mathbf{2}}{\boldsymbol{k}}=\frac{\mathbf{0 . 6 9 3}}{\boldsymbol{k}}
\end{array}
$$

Integrated First Order Rate Laws for Single Reactant

$$
\ln [\mathrm{A}]=-k t+\ln [\mathrm{A}]_{0} \quad \ln \left(\frac{[\mathrm{~A}]}{[\mathrm{A}]_{0}}\right)=-k t \quad t_{1 / 2}=\frac{\ln 2}{k}=\frac{0.693}{k}
$$

$[A]=$ Concentration of Reactant at time t
$k=$ Rate Constant
$[A]_{0}=$ Concentration of Reactant at time 0
$t=$ time $\quad t_{1 / 2}=$ half-life

2. Integrated Second-Order Rate Law for Single Reactant

$$
\begin{aligned}
\text { Rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]^{2} & (\text { Starting from Second-Order Rate Law) } \\
-\frac{1}{[\mathrm{~A}]^{2}} \Delta[\mathrm{~A}]=k \Delta t & (\text { Rearrange Equation for Integration) } \\
-\int_{[\mathrm{A}]_{0}}^{[\mathrm{A}]} \frac{1}{[\mathrm{~A}]^{2}} d[\mathrm{~A}]=k \int_{0}^{t} d t & \left(\Delta t=d t \text { and } \Delta[\mathrm{A}]=d[\mathrm{~A}] ; \text { Integrate Both Sides: }-\int \frac{1}{x^{2}} d x=\frac{1}{x}\right) \\
\left(\frac{\mathbf{1}}{[\mathbf{A}]}\right)-\left(\frac{\mathbf{1}}{[\mathbf{A}]_{0}}\right)=\boldsymbol{k} \boldsymbol{t} & \text { (Integrated Second Order Rate Law) }
\end{aligned}
$$

Graphing Integrated Second-Order Rate Law for Single Reactant
Initial Graph of [A] versus $t \quad$ Modified Graph of $\left(\frac{1}{[\mathbf{A}]}\right)$ versus t

$$
\begin{aligned}
& \text { If }\left(\frac{1}{[A]}\right) \text { versus } t \text { graph is a linear relation, then it is a Second Order Reaction } \\
& \text { with } \underline{k=\text { slope and }\left(\frac{1}{[A]_{0}}\right)=y \text {-intercept. }}
\end{aligned}
$$

Half-Life for Second-Order Reaction with a Single Reactant

- at half-life, $t_{1 / 2}$, the reactant's concentration is $1 / 2[\mathrm{~A}]_{0}=[\mathrm{A}]$:

$$
\begin{gathered}
\left(\frac{1}{[\mathrm{~A}]}\right)-\left(\frac{1}{[\mathrm{~A}]_{0}}\right)=k t \Rightarrow\left(\frac{1}{\frac{1}{2}[\mathrm{~A}]_{0}}\right)-\left(\frac{1}{[\mathrm{~A}]_{0}}\right)=k t_{1 / 2} \Rightarrow \frac{2}{[\mathrm{~A}]_{0}}-\frac{1}{[\mathrm{~A}]_{0}}=k t_{1 / 2} \Rightarrow \frac{1}{[\mathrm{~A}]_{0}}=k t_{1 / 2} \\
t_{t / 2}=\frac{\mathbf{1}}{\boldsymbol{k}[\mathbf{A}]_{0}}
\end{gathered}
$$

Integrated Second Order Rate Laws for Single Reactant

$$
\left(\frac{1}{[\mathbf{A}]}\right)=k t+\left(\frac{1}{[\mathbf{A}]_{0}}\right) \quad t_{1 / 2}=\frac{1}{k[\mathbf{A}]_{0}}
$$

[A] = Concentration of Reactant at time t
$k=$ Rate Constant
$[A]_{0}=$ Concentration of Reactant at time $0 \quad t=$ time $\quad t / 1 / 2=$ half-life

3. Integrated Zero-Order Rate Law for Single Reactant

$$
\begin{array}{rlrl}
\text { Rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t} & =k & & \text { (Starting from Zero-Order Rate Law) } \\
\Delta[\mathrm{A}] & =-k \Delta t & & \text { (Rearrange Equation for Integration) } \\
{[\mathrm{A}]} \\
\left.\int_{[\mathrm{A}]_{0}} d \mathrm{~A}\right] & =-k \int_{0}^{t} d t & & \left(\Delta t=d t \text { and } \Delta[\mathrm{A}]=d[\mathrm{~A}] \text {; Integrate Both Sides: } \int d x=x\right) \\
{[\mathbf{A}]-[\mathbf{A}]_{0}} & =-\boldsymbol{k} t & & \text { (Integrated Zero Order Rate Law) }
\end{array}
$$

Graphing Integrated Zero-Order Rate Law for Single Reactant

If the initial graph of $[A]$ versus t graph is a linear relation, then it is a Zero Order Reaction with $\underline{k=- \text { slope }}$ and $[\mathbf{A}]_{0}=y$-intercept.

Half-Life for Zero-Order Reaction with a Single Reactant

- at half-life, $t / 1 /$, the reactant's concentration is $1 / 2[\mathrm{~A}]_{0}=[\mathrm{A}]$:

$$
[\mathrm{A}]-[\mathrm{A}]_{0}=-k t \Rightarrow 1 / 2[\mathrm{~A}]_{0}-[\mathrm{A}]_{0}=-k \mathrm{t}_{1 / 2} \Rightarrow-\frac{[\mathrm{A}]_{0}}{2}=-k t_{1 / 2} \quad \boldsymbol{t}_{1 / 2}=\frac{[\mathbf{A}]_{0}}{\mathbf{2 k}}
$$

Integrated Zero Order Rate Laws for Single Reactant

$$
\begin{array}{cl}
{[\mathbf{A}]=-k t+[\mathrm{A}]_{0}} & t / 1 / 2=\frac{[\mathbf{A}]_{0}}{2 k} \\
{[\mathbf{A}]=\text { Concentration of Reactant at time } t} & k=\text { Rate Constant } \\
{[\mathbf{A}]_{0}=\text { Concentration of Reactant at time } 0} & t=\text { time } \quad t / 2=\text { half-life }
\end{array}
$$

Example 1: The decomposition of $\mathrm{HI}_{(\mathrm{g})}$ at 716 K yields the following data.

$$
\mathrm{HI}_{(g)} \rightarrow 1 / 2 \mathrm{H}_{2(g)}+1 / 2 \mathrm{I}_{2(g)}
$$

Time (minutes)	$[\mathbf{H I}] \mathbf{~ m o l} / \mathbf{L}$
0.00	0.02000
1.00	0.01248
2.00	0.00911
3.00	0.00716
4.00	0.00587
5.00	0.00501
6.00	0.00433

a. Complete the table below.
b. Graph [HI] versus $t, \ln [\mathrm{HI}]$ versus t, and $1 /[\mathrm{HI}]$ versus t. Assess the linearity to determine the overall rate order.
c. State the integrated rate law for the decomposition of HI and find the rate constant.
d. What is the half-life of this reaction?
e. Calculate the time needed for the reactant to reached 10.0% of its original concentration.

Time (minutes)	$[\mathbf{H I}] \mathbf{~ m o l} / \mathbf{L}$	$\mathbf{l n}[\mathbf{H I}]$	$\mathbf{1} /[\mathbf{H I}]$
0.00	0.02000		
1.00	0.01248		
2.00	0.00911		
3.00	0.00716		
4.00	0.00587		
5.00	0.00501		
6.00	0.00433		

a. Using the TI-83 Plus Calculator, we can enter the experimental results in the STATS Editor and quickly manipulate the data.

1. Enter Values in the L_{1} and L_{2} Columns of Stats Editor
2. Enter " $\ln \left(L_{2}\right)$ " in the heading of L_{3}.

Enter " $1 / L_{2}$ " in the heading of L_{4}.

STAT

ENTER

Page 254.
Copyrighted by Gabriel Tang B.Ed., B.Sc.
3. Fill in the Table

Time (minutes)	$[\mathrm{HI}] \mathbf{~ m o l} / \mathrm{L}$	$\ln [\mathrm{HI}]$	$\mathbf{1} /[\mathrm{HI}]$
0.00	0.02000	$\mathbf{- 3 . 9 1 2}$	$\mathbf{5 0}$
1.00	0.01248	$\mathbf{- 4 . 3 8 4}$	$\mathbf{8 0 . 1 2 8}$
2.00	0.00911	$\mathbf{- 4 . 6 9 8}$	$\mathbf{1 0 9 . 7 7}$
3.00	0.00716	$\mathbf{- 4 . 9 3 9}$	$\mathbf{1 3 9 . 6 6}$
4.00	0.00587	$\mathbf{- 5 . 1 3 8}$	$\mathbf{1 7 0 . 3 6}$
5.00	0.00501	$\mathbf{- 5 . 2 9 6}$	$\mathbf{1 9 9 . 6 0}$
6.00	0.00433	$\mathbf{- 5 . 4 4 2}$	$\mathbf{2 3 0 . 9 5}$

b. First, we Graph [HI] vs. t

1. Turn On STATS PLOT

2. Set WINDOW

WINDOW	$\begin{array}{l}x:[0,7,1] \\ y:[0,0.25,0.005]\end{array}$

[HI] vs. t Graph is a Curve.
Hence, it is NOT a Zero-Order Reaction.

Next, we graph $\ln [\mathrm{HI}]$ vs. t

1. Turn On STATS PLOT

2. Set WINDOW

WINDOW ${ }^{x:}[0,7,1]$

t (min)
$\ln [\mathrm{HI}]$ vs. t Graph is a Curve. Hence, it is NOT a First-Order Reaction.

Lastly, we graph $1 /[\mathrm{HI}]$ vs. t

1. Turn On STATS PLOT

2. Set WINDOW
```
WINDOW x: [0, 7, 1]
WINDOW y: [0, 250, 50]
```

3. Graph

GRAPH

c. Since the reaction is second order, the integrated rate law has a form of $\left(\frac{1}{[\mathrm{HI}]}\right)=k t+\left(\frac{1}{[\mathrm{HI}]_{0}}\right)$. We can use the linear regression function of the calculator to find the value of the slope.

1. Turn Diagnostic On

$$
\begin{gathered}
\boldsymbol{y}=\mathbf{3 0 . 0 8 4 8 x}+\mathbf{4 9 . 8 1 2 5} \text { compares to } \\
\left(\frac{1}{[\mathrm{HI}]}\right)=k t+\left(\frac{1}{[\mathrm{HI}]_{0}}\right) \\
\boldsymbol{k}=\mathbf{3 0 . 0 8 4 8} \mathbf{~ L} /(\mathbf{m o l} \bullet \mathbf{m i n})
\end{gathered}
$$

d. Half-Life

$$
\begin{equation*}
t_{1 / 2}=\frac{1}{k[\mathrm{HI}]_{0}}=\left(\frac{1}{k}\right)\left(\frac{1}{[\mathrm{HI}]_{0}}\right)=\left(\frac{1}{30.0848 \pm /(\mathrm{mol} \bullet \mathrm{~min})}\right) \tag{49.8125~L/mol}
\end{equation*}
$$

e. Time needed to reach

$$
10.0 \% \text { of }[\mathrm{HI}]_{0}
$$

$[\mathrm{HI}]_{0}=0.0201 \mathrm{~mol} / \mathrm{L}$
$[\mathrm{HI}]=0.100 \times 0.0201 \mathrm{~mol} / \mathrm{L}$
$[\mathrm{HI}]=0.00201 \mathrm{~mol} / \mathrm{L}$
$k=30.0848 \mathrm{~L} /(\mathrm{mol} \bullet \mathrm{min})$
$t=$?

$$
\begin{aligned}
&\left(\frac{1}{[\mathrm{HI}]}\right)=k t+\left(\frac{1}{[\mathrm{HI}]_{0}}\right) \\
&\left(\frac{1}{[\mathrm{HI}]}\right)-\left(\frac{1}{[\mathrm{HI}]_{0}}\right)=k t \\
& t=\frac{\left(\frac{1}{[\mathrm{HI}]}\right)-\left(\frac{1}{[\mathrm{HI}]_{0}}\right)}{k}=\frac{\left(\frac{1}{0.00201 \mathrm{mel} / \mathrm{L}}\right)-\left(\frac{1}{0.0201 \mathrm{mel} / \mathrm{E}}\right)}{(30.0848 \mathrm{~L} /(\mathrm{mel} \bullet \mathrm{~min}))} \\
& t=\mathbf{1 4 . 8 8} \mathbf{~ m i n}
\end{aligned}
$$

4. Integrated Rate Law for Multiple Reactants

Pseudo-First-Order Rate Law: - when there are multiple reactants, if we can have excess amount for all reactants except one, we can simplify the rate law so it behaves like a first-order reaction.

Pseudo-First-Order Rate Law

For reaction with Multiple Reactants, $a \mathrm{~A}+b \mathrm{~B} \rightarrow$ Products and Rate $=k[\mathrm{~A}][\mathrm{B}]^{n}$,
if $[B]_{0} \gg[A]_{0}$, then we can assume $[B] \approx[B]_{0}$.
We can simplify Rate $=k[\mathrm{~A}][\mathrm{B}]^{n}$ to Rate $=k^{\prime}[\mathrm{A}]$ where $k^{\prime}=k[\mathrm{~B}]^{n}$

Example 2: A reaction, $\mathrm{A}+3 \mathrm{~B}+2 \mathrm{C} \rightarrow 3 \mathrm{D}+\mathrm{E}$, has a rate law of Rate $=k[\mathrm{~A}][\mathrm{B}]^{2}[\mathrm{C}]$. The concentrations at the beginning of the experiment are $[\mathrm{A}]_{0}=0.0500 \mathrm{~mol} / \mathrm{L},[\mathrm{B}]_{0}=2.00 \mathrm{~mol} / \mathrm{L}$ and $[\mathrm{C}]_{0}=3.00$ $\mathrm{mol} / \mathrm{L}$. After 15.0 seconds, the concentration of A is $0.0342 \mathrm{~mol} / \mathrm{L}$.
a. Calculate k for this reaction.
b. Determine the half-life for this reaction.
c. Find the concentrations of A and C after 50.0 seconds.
a. Since $[\mathrm{B}]_{0}$ and $[\mathrm{C}]_{0} \gg[\mathrm{~A}]_{0}$, we can assume that $[\mathrm{B}] \approx[\mathrm{B}]_{0}$ and $[\mathrm{C}] \approx[\mathrm{C}]_{0}$.

Therefore, Rate $=k[\mathrm{~A}][\mathrm{B}]^{2}[\mathrm{C}]$ can be simplified to Rate $=k^{\prime}[\mathrm{A}]$ where $k^{\prime}=k[\mathrm{~B}]^{2}[\mathrm{C}]$.

$$
\begin{aligned}
\text { Rate } & =-k^{\prime}[\mathrm{A}] & & \text { (Pseudo-First-Order Rate Law) } \\
\ln [\mathrm{A}] & =-k^{\prime} t+\ln [\mathrm{A}]_{0} & & \text { (Pseudo-Integrated-First-Order Rate Law) }
\end{aligned}
$$

$$
[\mathrm{A}]_{0}=0.0500 \mathrm{~mol} / \mathrm{L} \quad t=15.0 \mathrm{~s} \quad[\mathrm{~A}]=0.0342 \mathrm{~mol} / \mathrm{L}
$$

$$
\begin{aligned}
\ln [\mathrm{A}]-\ln [\mathrm{A}]_{0} & =-k^{\prime} t \\
k^{\prime} & =\frac{\ln [\mathrm{A}]-\ln [\mathrm{A}]_{0}}{-t}=\frac{\ln (0.0342)-\ln (0.0500)}{-15.0 \mathrm{~s}} \quad k^{\prime}=0.0253 \mathrm{~s}^{-1}
\end{aligned}
$$

Finally, we have to convert k ' back to k.

$$
\begin{aligned}
& k^{\prime}=k[\mathrm{~B}]^{2}[\mathrm{C}] \\
& k=\frac{k^{\prime}}{[\mathrm{B}]^{2}[\mathrm{C}]}=\frac{\left(0.0253 \mathrm{~s}^{-1}\right)}{(2.00 \mathrm{~mol} / \mathrm{L})^{2}(3.00 \mathrm{~mol} / \mathrm{L})}
\end{aligned}
$$

b. Because we used the Pseudo-Integrated-First-Order Rate Law, the corresponding half-life is:
(Note: we are using k ')
$t_{1 / 2}=\frac{\ln (2)}{k^{\prime}}=\frac{\ln (2)}{0.0253 \mathrm{~s}^{-1}} \quad t_{1 / 2}=27.4 \mathrm{~s}$
c. At $t=50.0 \mathrm{~s},[\mathrm{~A}]=$?
$\ln [\mathrm{A}]=-k^{\prime} t+\ln [\mathrm{A}]_{0}$
$\ln [\mathrm{A}]=-\left(0.0253 \mathrm{~s}^{-1}\right)(50.0 \mathrm{~s})+\ln (0.0500)$
$\ln [\mathrm{A}]=-4.260732274$
$[\mathrm{A}]=e^{-4.260732274}$
$[\mathrm{A}]=0.0141 \mathrm{~mol} / \mathrm{L}$

Because $[\mathrm{C}] \approx[\mathrm{C}]_{0}=3.00 \mathrm{~mol} / \mathrm{L}$, at 50.0 s ,

In reality, $[\mathrm{A}]$ reacted $=[\mathrm{A}]_{0}-[\mathrm{A}]$
$[\mathrm{A}]_{\text {reacted }}=0.0500 \mathrm{~mol} / \mathrm{L}-0.0141 \mathrm{~mol} / \mathrm{L}$
$[\mathrm{A}]_{\text {reacted }}=0.0359 \mathrm{~mol} / \mathrm{L}$
$[\mathrm{C}]_{\text {reacted }}=\frac{2 \mathrm{molC}}{1 \mathrm{~mol} \mathrm{~A}} \times 0.0359 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{A}=0.0718 \mathrm{~mol} / \mathrm{L}$ $[\mathrm{C}]=[\mathrm{C}]_{0}-[\mathrm{C}]_{\text {reacted }}=3.00 \mathrm{~mol} / \mathrm{L}-0.0718 \mathrm{~mol} / \mathrm{L}$ $[\mathrm{C}]=2.93 \mathrm{~mol} / \mathrm{L}$

Summary of Rate Laws for Reactions with Single Reactant $a \mathbf{A} \rightarrow$ Products

Order	First	Second	Zero
Rate Law	Rate $=\boldsymbol{k}[\mathrm{A}]$	Rate $=k[\mathrm{~A}]^{2}$	Rate $=k$
Unit of \boldsymbol{k}	$\mathrm{s}^{\mathbf{- 1}}$ or min ${ }^{-1}$	$\mathbf{L / (m o l ~} \bullet$ s) or $\mathbf{L} /(\mathrm{mol} \bullet \mathrm{min})$	$\mathrm{mol} /(\mathrm{L} \bullet \mathrm{s})$ or mol$/(\mathrm{L} \bullet \mathrm{s})$
Integrated Rate Law	$\ln [\mathrm{A}]=-k t+\ln [\mathrm{A}]_{0}$	$\left(\frac{1}{[\mathbf{A}]}\right)=k t+\left(\frac{1}{[\mathbf{A}]_{0}}\right)$	$[A]=-k t+[A]_{0}$
Relationship with k and Linear Slope	Slope $=-\boldsymbol{k}$	Slope $=\boldsymbol{k}$	Slope $=-k$
Half-Life	$t_{1 / 2}=\frac{\ln 2}{k}$	$t_{1 / 2}=\frac{1}{k[\mathbf{A}]_{0}}$	$t_{1 / 2}=\frac{[\mathbf{A}]_{0}}{2 k}$

Assignment

13.3 pg. 590-591 \#23 to 30; pg. 594-595 \#88 and 94

13.4: A Model for Chemical Kinetics

Collision Model: - a model that state for a reaction to occur, molecules must collide with each other.

Factors Affecting the Collision Model:

1. Activation Energy $\left(\boldsymbol{E}_{a}\right)$: - the threshold energy molecules needed to overcome to cause a chemical reaction that was first proposed by Svante Arrhenius.

- E_{a} is the highest energy (top of the hill $-E_{\text {max }}$) minus the sum of energy of the reactants ($\Sigma \boldsymbol{H}_{\text {reactants }}$) on the potential energy diagram.

Activated Complex: - sometimes refer to as transition state. It is the transitional molecule found at the top "hill" of the activation energy.

2. Temperature (T): - the effective number of collisions increases exponentially with temperature.

Collision Frequency (z): - measures how often effective collision occurs.
 Because $T_{2}>T_{1}$, there are more molecules colliding with enough Kinetic Energy causing a reaction to occur.
3. Molecular Orientation: - the number of ways molecules collide that will lead to a reaction.

Steric Factor (p): - a measure that reflects the fraction of collisions with the effective orientations ($p<1$).

Arrhenius Equation: - developed by Arrehenius to relate rate constant (k) using the three factors that affect the collision model (Activation Energy, Temperature with Collision Frequency, and Steric Factor)

Arrhenius Equation

$$
k=z p e^{\frac{-E_{a}}{R T}} \quad k=A e^{\frac{-E_{a}}{R T}}
$$

$$
\begin{array}{lll}
k=\text { Rate Constant } & E_{a}=\text { Activation Energy }(\mathrm{J}) & T=\text { Temperature }(\mathbf{K}) \\
\mathrm{z}=\text { Collision Frequency } & p=\text { Steric Factor } & A=z p=\text { Frequency Factor } \\
R=\text { Gas Constant }(8.314 \mathrm{~J} /(\mathrm{K} \bullet \text { mol })) & &
\end{array}
$$

Linear Form of Arrhenius Equation

$$
\begin{array}{rlrl}
k & =A e^{\frac{-E_{a}}{R T}} & & \text { (Arrhenius Equation) } \\
\ln (k) & =\ln \left(A e^{\frac{-E_{a}}{R T}}\right) & & \text { (Natural-log both sides) } \\
\ln (k) & =\ln \left(e^{\frac{-E_{a}}{R T}}\right)+\ln (A) & & \text { (Applying Law of Logarithm: } \log (M N)=\log M+\log N) \\
\ln (k) & =-\frac{E_{a}}{R T}+\ln (A) & & \text { (Applying Law of Logarithm: ln } \left.e^{x}=x\right) \\
\ln (k) & =-\frac{\boldsymbol{E}_{a}}{\boldsymbol{R}}\left(\frac{\mathbf{1}}{\boldsymbol{T}}\right)+\ln (\mathbf{A}) & & \text { (We can graph } \left.\ln (\mathbf{k}) \text { versus }(\mathbf{1} / \boldsymbol{T}) \text { from an experiment to determine } \boldsymbol{E}_{a}\right) \\
\boldsymbol{\uparrow} & \boldsymbol{\uparrow} \\
\boldsymbol{y} & =\boldsymbol{m} x+\boldsymbol{x} & &
\end{array}
$$

We can also compare the rate constants and temperature from two different points on the graph.

$$
\begin{array}{ll}
\ln \left(k_{2}\right)-\ln \left(k_{1}\right)=\left[-\frac{E_{a}}{R T_{2}}+\ln (A)\right]-\left[-\frac{E_{a}}{R T_{1}}+\ln (A)\right] & \\
\ln \left(k_{2}\right)-\ln \left(k_{1}\right)=-\frac{E_{a}}{R T_{2}}+\ln (A)+\frac{E_{a}}{R T_{1}}-\ln (A) & \ln \left(\frac{\boldsymbol{k}_{2}}{\boldsymbol{k}_{\mathbf{1}}}\right)=\frac{\boldsymbol{E}_{a}}{\boldsymbol{R}}\left(\frac{\mathbf{1}}{\boldsymbol{T}_{\mathbf{1}}}-\frac{\mathbf{1}}{\boldsymbol{T}_{\mathbf{2}}}\right)
\end{array}
$$

Alternate Arrhenius Equation

$$
\begin{aligned}
& \qquad \ln (k)=-\frac{E_{a}}{R}\left(\frac{1}{T}\right)+\ln (A) \quad \ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
& k=\text { Rate Constant } \quad \\
& A=\text { Frequency Factor } \quad \\
& \quad R=\text { Gctivation Energy }(\mathrm{J}) \quad T=\text { Temperature (K) } \\
& \hline
\end{aligned}
$$

Example 1: The decomposition of $\mathrm{N}_{2} \mathrm{O}_{4(g)} \rightarrow 2 \mathrm{NO}_{2(g)}$ is a first order reaction. One experiment at 274 K , its rate constant is calculated to be $4.50 \times 10^{3} \mathrm{~s}^{-1}$. At another experiment at 283 K , its rate constant was determined to be $1.00 \times 10^{4} \mathrm{~s}^{-1}$. Find the activation energy of the decomposition of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$.

$$
\begin{array}{ll}
T_{1}=274 \mathrm{~K} & \ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
k_{1}=4.50 \times 10^{3} \mathrm{~s}^{-1} & E_{a}=\frac{R\left[\ln \left(\frac{k_{2}}{k_{1}}\right)\right]}{\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)}=\frac{(8.314 \mathrm{~J} /(\mathrm{K} \bullet \mathrm{~mol}))\left[\ln \left(\frac{4.50110^{3} s^{-1}}{1.00 \times 10^{-1} \mathrm{~s}^{-1}}\right)\right]}{\left(\frac{1}{274 \mathrm{~K}}-\frac{1}{283 \mathrm{~K}}\right)}=57201 \mathrm{~J} / \mathrm{mol} \\
T_{2}=283 \mathrm{~K} & \boldsymbol{E}_{a}=\mathbf{5 7 . 2} \mathbf{~ k J} / \mathbf{m o l} \\
k_{2}=1.00 \times 10^{4} \mathrm{~s}^{-1} & E^{2}=8.314 \mathrm{~J} /(\mathrm{K} \bullet \mathrm{~mol}) \\
E_{a}=? &
\end{array}
$$

Example 2: The decomposition of $2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow 2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$ yields the following data.

Temperature (K)	$\boldsymbol{k}(\mathbf{L} /(\mathbf{m o l} \bullet \mathbf{s})$
1125	11.59
1053	1.67
1001	0.38
838	0.0011

a. Complete the table below.
b. Graph $\ln (k)$ versus $(1 / T)$. Assess the linearity to determine the activation energy.
c. Draw the potential energy diagram for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{(g)}$ at $298 \mathrm{~K} .\left(\Delta H^{\circ}{ }_{f}=82 \mathrm{~kJ} / \mathrm{mol}\right)$

Temperature (K)	$\boldsymbol{k}(\mathbf{L} /(\mathbf{m o l} \bullet \mathbf{s})$	$\mathbf{1} / \boldsymbol{T}\left(\mathbf{K}^{\mathbf{1}}\right)$	$\mathbf{l n}(\mathbf{k})$
1125	11.5900		
1053	1.6700		
1001	0.3800		
838.0	0.0011		

a. Using the TI-83 Plus Calculator, we can enter the experimental results in the STATS Editor and quickly manipulate the data.

1. Enter Values in the L_{1} and L_{2} Columns of Stats Editor

STAT

ENTER

2. Enter " $1 / L_{1}$ " in the heading of L_{3}.

Enter " $\ln \left(\mathrm{L}_{2}\right)$ " in the heading of L_{4}.

$$
135
$$L

L1	Lz	困 - 3
${ }_{105}^{1185}$	11.59	
1061	- 86	1E- ${ }^{15}$

Cursor must be on the column heading before entering formula

4. Fill in the Table

Temperature (K)	$\boldsymbol{k}(\mathbf{L} /(\mathbf{m o l} \bullet \mathbf{s})$	$\mathbf{1} / \mathbf{T}\left(\mathbf{K}^{\mathbf{1}}\right)$	$\mathbf{l n}(\mathbf{k})$
1125	11.5900	8.889×10^{-4}	2.4501
1053	1.6700	9.497×10^{-4}	0.5128
1001	0.3800	9.990×10^{-4}	-0.9676
838.0	0.0011	0.001193	-6.8124

b. Graph $\ln (k)$ versus (1/T). Assess the linearity to determine the activation energy.

We can use the linear regression function of the calculator to find the value of the slope and y intercept for calculating ΔE_{a} and A respectively.

1. Turn Diagnostic On

GRAPH

$$
y=-30316.56709117 x+29.346306827127
$$ compares to

$$
\ln (k)=-\frac{E_{a}}{R}\left(\frac{1}{T}\right)+\ln (A)
$$

$$
\text { slope }=-30316.56709117 \mathrm{~K}
$$

$$
-\frac{E_{a}}{R}=\text { slope } \quad E_{a}=-(\text { slope }) R=-(-30316.56709117 \mathrm{~K})(8.314 \mathrm{~J} /(\mathrm{mol} \bullet \mathrm{~K}))=251930.6725 \mathrm{~J} / \mathrm{mol}
$$

$$
E_{a}=252 \mathrm{~kJ} / \mathrm{mol}
$$

c. Draw the potential energy diagram for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{(g)}$ at $298 \mathrm{~K} .\left(\Delta H^{\circ}=82 \mathrm{~kJ} / \mathrm{mol}\right)$

Assignment

$$
13.4 \text { pg. 590-591 \#31 to 42; pg. } 596 \text { \#109, 110, } 112
$$

13.5: Reaction Mechanisms

Reaction Mechanisms: - the series of steps involve in most chemical reactions.
Intermediates: - a chemical species that is produced in the initial reaction but is consumed by the final reaction step.

- an intermediate does NOT appear in the overall reaction.

Molecularity: - the number of chemical species that must COLLIDE in a reaction step.
Elementary Step: - a reaction step for which its rate can be written based on it molecularity.

1. Unimolecular: - an elementary step where one molecule dissociates.

$$
(\mathrm{A} \rightarrow \text { Products where Rate }=k[\mathrm{~A}])
$$

2. Bimolecular: - an elementary step where two molecule collides.

$$
\left(\mathrm{A}+\mathrm{A} \rightarrow \text { Products where Rate }=k[\mathrm{~A}]^{2} \text { or } \mathrm{A}+\mathrm{B} \rightarrow \text { Products where Rate }=k[\mathrm{~A}][\mathrm{B}]\right)
$$

3. Termolecular: - an elementary step where three molecule collides.

Termolecular

$$
\begin{aligned}
& \left(\mathrm{A}+\mathrm{A}+\mathrm{B} \rightarrow \text { Products where Rate }=k[\mathrm{~A}]^{2}[\mathrm{~B}]\right. \text { or } \\
& \quad \mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow \text { Products where Rate }=k[\mathrm{~A}][\mathrm{B}][\mathrm{C}])
\end{aligned}
$$

Example 1: The reaction, $\mathrm{SO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3(a q)}$, has the following reaction mechanism.

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O}_{(l)} & \rightarrow \mathrm{H}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-} \\
\mathrm{H}_{(a q)-}^{+}+\mathrm{SO}_{2(g)} & \rightarrow \mathrm{HSO}_{2}^{+}(a q) \\
\mathrm{HSO}_{2}^{+}+\mathrm{OH}_{(a q)}^{-} & \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3(a q)}
\end{aligned}
$$

Determine the rate law for each of the elementary step above and state their molecularity. Identify all intermediates.

$$
\begin{array}{rll}
\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{(a q)}^{+}+\mathrm{OH}^{-}(a q) & \text { Rate }=\boldsymbol{k}_{1}\left[\mathbf{H}_{2} \mathbf{O}\right] & \text { (Unimolecular } \\
\mathrm{H}_{(a q)}^{+}+\mathrm{SO}_{2(g)} \rightarrow \mathrm{HSO}_{2}^{+}{ }_{(a q)} & \text { Rate }=\boldsymbol{k}_{2}\left[\mathrm{H}^{+}\right]\left[\mathrm{SO}_{2}\right] & \text { (Bimolecular) } \\
\mathrm{HSO}_{2}^{+}(a q)+\mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3(a q)} & \text { Rate }=\boldsymbol{k}_{3}\left[\mathrm{HSO}_{2}^{+}\right]\left[\mathbf{O H}^{-}\right] & \text {(Bimolecular) }
\end{array}
$$

Intermediates: $\mathbf{H}_{(a q)}^{+}, \mathbf{O H}_{(a q)}^{-}$, and $\mathbf{H S O}_{2}{ }_{(a q)}$

Rate-Determining Step: - the slowest step of the reaction mechanism for which the overall reaction rate is based on.

Deduction of Reaction Mechanism: - possible reaction mechanisms are deduced by the overall reaction rate from experimentation and chemical experience.

- a given rate law can give rise to many possible reaction mechanism. That is, a reaction mechanism can never be proven absolutely

Two Conditions for a Possible Reaction Mechanism

1. All reaction steps should add up to the final balanced reaction.
2. The rate law as determined by experimentation must agree with the rate law of the rate-determining step.

Example 2: The reaction, $\mathrm{H}_{2} \mathrm{O}_{2(a q)}+2 \mathrm{H}_{(a q)}^{+}+2 \mathrm{I}_{(a q)}^{-} \rightarrow \mathrm{I}_{2(a q)}+2 \mathrm{H}_{2} \mathrm{O}_{(I)}$, has a experimental rate law of Rate $=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]$. Are the following steps a possible reaction mechanism?

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}_{2(a q)}+\mathrm{I}_{(a q)}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(I)}+\mathrm{IO}_{(a q)}^{-} \quad \text { (Slow) } \\
& \mathrm{H}_{(a q)}^{+}+\mathrm{IO}_{(a q)}^{-} \rightarrow \mathrm{HIO}_{(a q)} \quad \text { (Fast) } \\
& \mathrm{HIO}_{(a q)}+\mathrm{H}_{(a q)}^{+}+\mathrm{I}_{(a q)}^{-} \rightarrow \mathrm{I}_{2(a q)}+\mathrm{H}_{2} \mathrm{O}_{(I)} \quad \text { (Fast) } \\
& \mathrm{H}_{2} \mathrm{O}_{2(a q)}+\mathrm{I}_{(a q)}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(I)}+\mathrm{I}^{-}{ }_{(\text {(aq) }} \text { (Slow) Rate-determining step: } \\
& \mathrm{H}_{(a q)}^{+}+\mathrm{IO}_{(a q)}^{-} \rightarrow \mathrm{HIO}_{(\text {(aq) })} \quad \text { (Fast) } \quad \text { Rate }=\boldsymbol{k}_{1}\left[\mathbf{H}_{2} \mathbf{O}_{2}\right]\left[\mathrm{I}^{-}\right] \\
& \mathrm{HHO}(a q)+\mathrm{H}^{+}(a q)+\mathrm{I}^{-}(a q) \rightarrow \mathrm{I}_{2}(a q)+\mathrm{H}_{2} \underline{\mathrm{O}}_{(l)} \text { _ (Fast) Experimental Rate Law: } \\
& \mathbf{H}_{\mathbf{2}} \mathrm{O}_{\mathbf{2}(a q)}+\mathbf{2} \mathrm{H}_{(a q)}^{+}+\mathbf{2} \mathbf{I}_{(a q)}^{-} \rightarrow \mathbf{I}_{\mathbf{2}(a q)}+\mathbf{2} \mathbf{H}_{2} \mathrm{O}_{(\mathrm{I})} \quad \text { Rate }=\boldsymbol{k}\left[\mathbf{H}_{2} \mathrm{O}_{2}\right]\left[\mathbf{I}^{-}\right] \\
& \text {Steps of the Reaction Mechanism added up to the final reaction (} 1^{\text {st }} \text { condition met). } \\
& \text { Rate-determining elementary step gives the same rate law compared to that from } \\
& \text { experiments (} 2^{\text {nd }} \text { condition met). Therefore, the proposed mechanism is a possible } \\
& \text { pathway for the overall final reaction. }
\end{aligned}
$$

Assignment

13.5 pg. 591-595 \#43 to 49, 51 to 54, 68, 70, 73, 99

13.6: Catalysis

Catalyst: - a substance that speeds up the reaction without being consumed in the reaction.

- unlike intermediates, catalyst is used and recycled in the reaction.
- lowers activation energy by providing an alternate reaction pathway.
(ΔE_{a} is lowered but ΔH_{rxn} remains the same.)

Reaction coordinate
\longrightarrow

Three Types of Catalyst

1. Heterogeneous Catalyst: - a catalyst that exists in a different phase compared to the reactants.

- utilizes the concept of adsorption to "hold down" the reactants for faster reaction rate.

Adsorption: - collection of a substance on the surface of another substance.

- the opposite of absorption (passing a substance through another).

In general, heterogeneous catalytic reaction involves four steps.

1. Adsorption of the reactants and activation of the heterogeneous catalyst on the surface.
2. Migration of the adsorbed reactants on the catalytic surface.
3. Reaction of the adsorbed substances.
4. Desorption or release of the products.

Examples: a. Ammonia is formed from its elements using heterogeneous catalyst such as $\mathrm{Pt}_{(s)}$:

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \xrightarrow{\mathrm{Pt}} 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

(Check out Video at http://www.dac.neu.edu/physics/b.maheswaran/phy1121/data/ch11/anim/anim11-5b.mov)

b. The catalytic converter converts $\mathrm{NO}_{(g)}$ (result of burning nitrogen at high temperature) to $\mathrm{N}_{2(\mathrm{~g})}$ and $\mathrm{O}_{2(\mathrm{~g})}$. The $\mathrm{O}_{2(\mathrm{~g})}$ along with the catalytic converter is used to produce $\mathrm{CO}_{2(\mathrm{~g})}$ from $\mathrm{CO}_{(\mathrm{g})}$.

$$
\begin{array}{r}
2 \mathrm{NO}_{(g)} \xrightarrow{\text { catalytic converter }} \mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \\
2 \mathrm{CO}_{(g)}+\mathrm{O}_{2(g)} \xrightarrow{\text { catalytic converter }} 2 \mathrm{CO}_{2(g)}
\end{array}
$$

A catalytic converter for most modern vehicle. Leaded gasoline deactivates catalytic converter. Therefore, they are not legally used in vehicles
2. Homogeneous Catalyst: - a catalyst that exists in the same phase as the reactants.

Example 1: The destruction of ozone in upper atmosphere can be attributed to $\mathrm{NO}_{(g)}$ and CFCs acting as catalysts. $\mathrm{NO}_{(g)}$ is produced from the combustion of $\mathrm{N}_{2(g)}$ at high temperature commonly found in internal combustion engine (high-altitude aircraft produces lots of $\mathrm{NO}_{(g)}$). CFCs (chloro-fluoro-carbon compounds) are found in aerosol can propellants, refrigerators, and air conditioners. They break down to form $\mathrm{Cl}_{(g)}$ with the presence of light. Use the following two reaction mechanisms; identify the intermediates and catalysts for the decomposition processes of ozone in the upper atmosphere.

$$
\begin{gathered}
\mathrm{NO}_{(g)}+\mathrm{O}_{3(g)} \rightarrow \mathrm{NO}_{2(g)}+\mathrm{O}_{2(g)} \\
\mathrm{O}_{(g)}+\mathrm{NO}_{\underline{2(g)}} \rightarrow \mathrm{NO}_{(g))}+\mathrm{O}_{2(g)} \\
\hline \mathrm{O}_{(g)}+\mathrm{O}_{3(g)} \rightarrow 2 \mathrm{O}_{2(g)}
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{Cl}_{(g)}+\mathrm{O}_{3(g)} & \rightarrow \mathrm{ClO}_{(g)}+\mathrm{O}_{2(g)} \\
\mathrm{O}_{(g)}+\mathrm{ClO}_{(g)} & \rightarrow \mathrm{Cl}_{(g)}+\mathrm{O}_{2(g)} \\
\mathrm{O}_{(\mathrm{g})}+\mathrm{O}_{3(g)} & \rightarrow 2 \mathrm{O}_{2(\mathrm{~g})}
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{N O}_{(g)}+\mathrm{O}_{3(g)} \rightarrow \mathrm{NO}_{2(g)}+\mathrm{O}_{2(g)} \\
\mathrm{O}_{(g)}+\mathrm{NO}_{2(g)} \rightarrow \mathbf{N O}_{(g)}+\mathrm{O}_{2(g)} \\
\hline \mathrm{O}_{(g)}+\mathrm{O}_{3(g)} \rightarrow 2 \mathrm{O}_{2(g)}
\end{gathered}
$$

$$
\mathrm{Cl}_{(\mathrm{g})}+\mathrm{O}_{3(\mathrm{~g})} \rightarrow \mathrm{ClO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

$$
\underline{\mathrm{O}}(\mathrm{~g})^{\mathrm{O}_{(\mathrm{g})}+\mathrm{ClO}_{3(\mathrm{~g})} \rightarrow 2 \mathrm{Ol}_{(\mathrm{g})}}+\mathrm{O}_{2(\mathrm{~g})}
$$

Intermediate: Catalyst: $\mathbf{C l O}_{(g)}$
$\mathbf{C l}_{(g)}$

How Ozone is Destroyed

(Above) The Ozone Hole over the South Pole (Sept 2000). A similar hole is present over the Arctic. (Left) Process of Ozone Depletion. Ozone blocks harmful UV rays that can otherwise cause skin cancer.
3. Enzyme Catalyst: - a biological catalysts that speeds up certain types of chemical reaction in living beings. - an enzyme is typically a large protein molecule.

- an average cell can consist of over 3000 different enzymes.
- a specific enzyme only acts on specific molecule called substrate (or reactant). It can be viewed as the "lock-and-key" model as first developed by Emil Fischer in 1894 (see diagram below).
- many enzymes have multiple active sites for the interactions of substrates.
- thermodynamically, the main goal of enzymes is to lower ΔG, thereby increasing thermodynamic spontaneity. ΔS is reduced by bringing the substrates in the correct orientation to react.
- kinetically, the speed of the reaction is increased due to lowering of the energy of the activation complex (transition state). Some enzymes can catalyze the forward and reverse reaction equally, such as carbonic anhydrase. In either case, the activation energy is lowered.

$13.6 \mathrm{pg} .592-595$ Assignment to
$64, ~ 55, ~ 80, ~ 82, ~$
64

Page 268.
Copyrighted by Gabriel Tang B.Ed., B.Sc.

Chapter 14: Chemical Equilibrium

14.1: The Concept of Equilibrium and the Equilibrium Constant

Chemical Equilibrium: - the state at which the concentrations of all reactants and products remain constant with time (the Forward Reaction Rate = Reverse Reaction Rate).

- the equilibrium state is dynamic (not static). Chemical species are continuously converting from reactants to products and vice versa. It appears that the reaction has stopped only because the rate of consumption $=$ rate of production.
- if an equilibrium state is disturbed (changing concentrations of species, pressure, volume and temperature change), the reaction will shift towards one side in order to re-establish the new equilibrium state.
- like reaction rate, Equilibrium is affected by Temperature.

$$
a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D}
$$

a and b : Coefficients of reactant species A and B
c and d : Coefficients of product species C and D
\rightleftharpoons equilibrium symbol (indicating forward and reverse reactions)

(Check out Video at http://www.mhhe.com/physsci/chemistry/animations/chang 7e esp/kim2s2 5.swf)

The $\mathbf{N}_{2} \underline{\mathrm{O}}_{4(q)} \rightleftharpoons 2 \mathrm{NO}_{2(q)}$ equilibrium. Initially (Picture A), there were very little $\mathrm{NO}_{2(\mathrm{~g})}$. As time proceeded forward, more $\mathrm{NO}_{2(\mathrm{~g})}$ (brown color) is produced (Pictures $\mathrm{B} \& \mathrm{C}$). However, there are still $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ present at the equilibrium state (Picture D).

Law of Mass Action: - a reversible reaction at equilibrium and a constant temperature, a certain ratio of reactant and product concentrations (Equilibrium Expression) has a constant value, K-equilibrium constant.

Equilibrium Expression: - an expression relating the concentrations or pressures of the reactants and products when they are at the state of equilibrium.

- it takes the form of the individual products raised to the power of their respective coefficients divided by the individual reactants raised to the power of their respective coefficients.
- the equilibrium expression is unique for each reaction, but it is the same for that particular reaction regardless of temperature.

Equilibrium Constant (K): - the unitless numerical value of the equilibrium expression.

- the equilibrium constant is the same for a particular reaction if it remains at the same temperature.

Equilibrium Expression and Constant of a Reaction

$$
\begin{aligned}
& \boldsymbol{a} \mathrm{A}+\boldsymbol{b B} \rightleftharpoons c \mathrm{C}+\boldsymbol{d \mathrm { D }} \\
& \left.\boldsymbol{K}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}\right\} \longleftarrow \text { Equilibrium Expressions }
\end{aligned}
$$

a and b : Coefficients of reactant species A and B
c and d : Coefficients of product species C and D
$[A],[B],[C] \&[D]=$ Equilibrium Concentrations of Chemicals
$K=$ Equilibrium Constant (Concentrations)

Assignment
 14.1 pg. 633 \#1 to 4

14.2: Writing Equilibrium Constant Expressions

Homogeneous Equilibria: - an equilibrium system where all chemical species are in the same phase.
Equilibrium Constant (K): - the symbol for equilibrium constant when the expression deals with concentrations is simply \boldsymbol{K} or $\boldsymbol{K}_{\boldsymbol{c}}$. When the expression deals with pressures, it is symbolized as K_{P}.

- for equilibrium of an ideal system, the activity of a substance is the ratio of its concentration or partial pressure to a standard value of 1 M or 1 atm . The procedure eliminates all units but does not alter the numerical value of the concentrations and pressures. Therefore, K has no units.

Equilibrium Expression and Constant of a Reaction

$$
\begin{gathered}
\boldsymbol{a} \mathbf{A}+\boldsymbol{b B} \rightleftharpoons c \mathbf{C}+\boldsymbol{d D} \\
K=K_{c}=\frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}} \quad K_{P}=\frac{\boldsymbol{P}_{\mathbf{C}}^{c} \boldsymbol{P}_{\mathrm{D}}^{d}}{\boldsymbol{P}_{\mathbf{A}}^{a} \boldsymbol{P}_{\mathbf{B}}^{b}}
\end{gathered}
$$

a and b : Coefficients of reactant species A and B
c and d : Coefficients of product species C and D $[A],[B],[C] \&[D]=[A]_{e q},[B]_{e q},[C]_{e q} \&[D]_{e q}=$ Equilibrium Concentrations of Chemicals (mol/L)
$\boldsymbol{P}_{\mathrm{A}}, P_{\mathrm{B}}, P_{\mathrm{C}} \& P_{\mathrm{D}}=\boldsymbol{P}_{\mathrm{A}, e q}, P_{\mathrm{B}, e q}, P_{\mathrm{C}, e q} \& P_{\mathrm{D}, e q}=$ Equilibrium Pressures of Chemicals (atm)
K or $K_{c}=$ Equilibrium Constant (Concentrations) $\quad K_{P}=$ Equilibrium Constant (Pressures)

Both K_{c} and K_{P} are Unitless

Example 1: Write the equilibrium expression of the following reactions.
a. $\quad \mathrm{Br}_{2(\mathrm{~g})}+5 \mathrm{~F}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{BrF}_{5(\mathrm{~g})}$

b. $\mathrm{N}_{2} \mathrm{H}_{4(g)}+6 \mathrm{H}_{2} \mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}+8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

Equilibrium Position: - the concentrations or pressures of all chemical species at equilibrium state.

- depends strongly on the Initial Concentrations of the chemical species. (In contrast, K does NOT depend on initial concentrations, only on temperature and the specific reaction.)
- since there all many possible initial concentrations for any one reaction, there are infinite number of equilibrium position for a particular reaction.
Note: Do NOT confuse initial concentrations [A] $]_{0}$ with equilibrium concentration $[\mathrm{A}]_{\text {eq }}$!! We only use Equilibrium Concentrations to calculate K by substituting them into the equilibrium expression.

Example 2: The formation of $\mathrm{HI}_{(g)}$ is an equilibrium reaction. Several experiments are performed at 710 K using different initial concentrations.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2_{(g)}} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}
$$

Experiment 1

Initial	Equilibrium
$\left[\mathrm{H}_{2}\right]_{0}=0.100 \mathrm{M}$	$\left[\mathrm{H}_{2}\right]_{e q}=0.0222 \mathrm{M}$
$\left[\mathrm{I}_{2}\right]_{0}=0.100 \mathrm{M}$	$\left[\mathrm{I}_{2}\right]_{e q}=0.0222 \mathrm{M}$
$[\mathrm{HI}]_{0}=0 \mathrm{M}$	$[\mathrm{HI}]_{\text {eq }}=0.156 \mathrm{M}$

Experiment 3

Initial	Equilibrium
$\left[\mathrm{H}_{2}\right]_{0}=0.00150 \mathrm{M}$	$\left[\mathrm{H}_{2}\right]_{e q}=0.0150 \mathrm{M}$
$\left[\mathrm{I}_{2}\right]_{0}=0 \mathrm{M}$	$\left[\mathrm{I}_{2}\right]_{e q}=0.0135 \mathrm{M}$
$[\mathrm{HI}]_{0}=0.127 \mathrm{M}$	$[\mathrm{HI}]_{e q}=0.100 \mathrm{M}$

Experiment 2

Initial	Equilibrium
$\left[\mathrm{H}_{2}\right]_{0}=0 \mathrm{M}$	$\left[\mathrm{H}_{2}\right]_{e q}=0.0350 \mathrm{M}$
$\left[\mathrm{I}_{2}\right]_{0}=0.0100 \mathrm{M}$	$\left[\mathrm{I}_{2}\right]_{e q}=0.0450 \mathrm{M}$
$[\mathrm{HI}]_{0}=0.350 \mathrm{M}$	$[\mathrm{HI}]_{e q}=0.280 \mathrm{M}$

Experiment 4

Initial	Equilibrium
$\left[\mathrm{H}_{2}\right]_{0}=0 \mathrm{M}$	$\left[\mathrm{H}_{2}\right]_{e q}=0.0442 \mathrm{M}$
$\left[\mathrm{I}_{2}\right]_{0}=0 \mathrm{M}$	$\left[\mathrm{I}_{2}\right]_{e q}=0.0442 \mathrm{M}$
$[\mathrm{HI}]_{0}=0.400 \mathrm{M}$	$[\mathrm{HI}]_{e q}=0.311 \mathrm{M}$

a. Write the equilibrium expression for the formation of $\mathrm{HI}_{(\mathrm{g})}$.
b. Calculate the equilibrium constant for each experiment, and average them for an overall value.

b. Equilibrium Constant:

Experiment 1: $K_{1}=\frac{[\mathrm{HI}]_{e q}{ }^{2}}{\left[\mathrm{H}_{2}\right]_{e q}\left[\mathrm{I}_{2}\right]_{e q}}=\frac{(0.156)^{2}}{(0.0222)(0.0222)}$ Experiment 2: $K_{2}=\frac{[\mathrm{HI}]_{e q}{ }^{2}}{\left[\mathrm{H}_{2}\right]_{e q}\left[\mathrm{I}_{2}\right]_{e q}}=\frac{(0.280)^{2}}{(0.0350)(0.0450)}$
$\left.K_{1}=49.4 \mathrm{~K}_{2}=49.8{ }^{2}{ }^{2} \mathrm{KI}^{2}\right]_{e q}{ }^{2}$
Experiment 3: $K_{3}=\frac{[\mathrm{HI}]_{e q}{ }^{2}}{\left[\mathrm{H}_{2}\right]_{e q}\left[\mathrm{I}_{2}\right]_{e q}}=\frac{(0.100)^{2}}{(0.0150)(0.0135)}$ Experiment 4: $K_{4}=\frac{[\mathrm{HI}]_{2}}{\left[\mathrm{H}_{2}\right]_{e q}\left[\mathrm{I}_{2}\right]_{e q}}=\frac{(0.311)^{2}}{(0.0442)(0.0442)}$

$$
K_{3}=49.3
$$

Average $K=\frac{49.4+49.8+49.3+49.5}{4}$

$$
K_{\text {avg }}=49.5
$$

Converting K_{C} to K_{P} :

$$
\begin{aligned}
P V & =n R T & & (\text { Ideal Gas Law) } \\
P & =\left(\frac{n}{V}\right) R T=C R T & & \left(\text { Solving for } P \text { and let } \frac{n}{V}=\right.\text { Concentration) } \\
K_{P} & =\frac{P_{\mathrm{C}}^{c} P_{\mathrm{D}}^{d}}{\boldsymbol{P}_{\mathrm{A}}^{a} P_{\mathrm{B}}^{b}} & & \text { (Equilibrium Expression and Constant for } a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D})
\end{aligned}
$$

Substituting pressures for each chemical species into the equilibrium expression:

$$
\begin{aligned}
& \left(P_{\mathrm{A}}=[\mathrm{A}] R T ; P_{\mathrm{B}}=[\mathrm{B}] R T ; P_{\mathrm{C}}=[\mathrm{C}] R T \text {; and } P_{\mathrm{D}}=[\mathrm{D}] R T\right) \\
& K_{P}=\frac{([\mathrm{C}] R T)^{c}([\mathrm{D}] R T)^{d}}{([\mathrm{~A}] R T)^{a}([\mathrm{~B}] R T)^{b}}=\frac{[\mathrm{C}]^{c}(R T)^{c}[\mathrm{D}]^{d}(R T)^{d}}{[\mathrm{~A}]^{a}(R T)^{a}[\mathrm{~B}]^{b}(R T)^{b}} \quad \begin{array}{l}
\text { (Combine exponents on common }
\end{array} \text { base RT using Laws of Exponents) } \\
& \left.K_{P}=\frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}(\mathbf{R T})^{c+d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}(\mathbf{R T})^{a+b}}=\frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}(\boldsymbol{R T})^{(c+d)-(a+b)} \quad \text { (Replace } \frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}} \text { with } K_{c}\right) \\
& K_{P}=K_{c}(R T)^{(c+d)-(a+b)}
\end{aligned}
$$

Conversion between Concentration and Pressure Equilibrium Constants

$$
\begin{aligned}
a \mathrm{~A}+b \mathrm{~B} & \rightleftharpoons c \mathrm{C}+d \mathrm{D} \\
K_{P} & =K_{c}(R T)^{\Delta n}
\end{aligned}
$$

where $\Delta n=\Sigma$ Coefficients of Products $-\Sigma$ Coefficients of Reactants $=(c+d)-(a+b)$ $R=0.08206 \mathrm{~K}^{-1} \quad T=$ Temperature in K
R has a unit of K^{-1} to cancel out with the Kelvin from Temperature only, therefore K calculated will remain unitless

Example 3: One possible way of removing $\mathrm{NO}_{(g)}$ from the exhaust of an internal combustion engine is to cause it to react with $\mathrm{CO}_{(g)}$ in the presence of suitable catalyst.

$$
2 \mathrm{NO}_{(g)}+2 \mathrm{CO}_{(g)} \rightleftharpoons \mathrm{N}_{2(g)}+2 \mathrm{CO}_{2(g)}
$$

At 575 K , the reaction has $K=2.2 \times 10^{59}$. What is K_{P} of the same reaction at 575 K ?

$$
\begin{array}{ll}
K=K_{c}=2.2 \times 10^{59} & K_{P}=K_{c}(R T)^{\Delta n} \\
R=0.08206 \mathrm{~K}^{-1} & K_{P}=\left(2.2 \times 10^{59}\right)\left[\left(0.08206 \mathrm{~K}^{-1}\right)(575 \mathrm{~K})\right]^{-1} \\
T=575 \mathrm{~K} & K_{P}=\left(2.2 \times 10^{59}\right)[47.1845]^{-1} \\
\Delta n=\Sigma n_{\text {products }}-\Sigma n_{\text {reactants }} & \\
\Delta n=(1+2)-(2+2)=3-4 & \\
\Delta n=-1 & K_{P}=\mathbf{4 . 7} \times \mathbf{1 0}^{\mathbf{5 7}} \\
\boldsymbol{K}_{P}=\text { ? } &
\end{array}
$$

Example 4: The German's Haber-Bosch process developed in 1913 utilizes an iron surface that contains traces of aluminium and potassium oxide as a catalyst to manufacture ammonia from nitrogen and hydrogen. It is an important process as ammonia is commonly used in fertilizer and ammunition. In 1918, the scientist Fritz Haber won the Nobel Prize in chemistry for his contribution.

$$
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3(g)}
$$

a. At $400 \mathrm{~K}, P_{\mathrm{NH}_{3}}=0.1024 \mathrm{~atm}, P_{\mathrm{N}_{2}}=2.8084 \mathrm{~atm}$ and $P_{\mathrm{H}_{2}}=0.0102 \mathrm{~atm}$. Write the equilibrium expression in terms of pressure and calculate K_{P}.
b. Convert the calculated K_{P} above to K.
a. Equilibrium Expression: $K_{P}=\frac{\boldsymbol{P}_{\mathrm{NH}_{3}}^{2}}{\boldsymbol{P}_{\mathrm{N}_{2}} \boldsymbol{P}_{\mathrm{H}_{2}}^{3}}$

$$
\text { Equilibrium Constant: } K_{P}=\frac{(0.1024)^{2}}{(2.8084)(0.0102)^{3}}
$$

b. $K_{P}=3.52 \times 10^{3}$

$$
K_{P}=3.52 \times 10^{3}
$$

$$
\begin{array}{ll}
R=0.08206 \mathrm{~K}^{-1} \quad T=400 \mathrm{~K} & K_{P}=K_{c}(R T)^{\Delta n} \\
\Delta n=\Sigma n_{\text {products }}-\Sigma n_{\text {reactants }} & K_{c}=\frac{K_{P}}{(R T)^{\Delta n}}=\frac{\left(3.52 \times 10^{3}\right)}{\left[\left(0.08206 \mathrm{~K}^{-1}\right)(400 \mathrm{~K})\right]^{-2}} \\
\Delta n=(2)-(1+3)=2-4 & \\
\Delta n=-2 & \\
K_{P}=? &
\end{array}
$$

Heterogeneous Equilibria: - an equilibrium system where some chemical species are in different phase compare to the others.

- chemical species that are Pure Solid or Pure Liquid are NOT Included in the Equilibrium Expression. This is due to the fact that pure solids and liquids do not have concentrations.

Example 5: Write the equilibrium expression for the following systems.
a. $\quad 2 \mathrm{NaN}_{3(\mathrm{~s})} \rightleftharpoons 2 \mathrm{Na}_{(\mathrm{s})}+3 \mathrm{~N}_{2(\mathrm{~g})}$
b. $2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \rightleftharpoons \mathrm{H}_{2} \mathrm{NCONH}_{2(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

$\left(\mathrm{H}_{2} \mathrm{NCONH}_{2}\right.$ is a Pure Solid)
c. $\mathrm{Ag}_{2} \mathrm{SO}_{4(s)} \rightleftharpoons 2 \mathrm{Ag}^{+}{ }_{(a q)}+\mathrm{SO}_{4}{ }^{2-}{ }_{(a q)}$

($\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is a Pure Solid)
(No K_{P} because there are no gases.)
d. $\mathrm{HF}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{F}^{-}{ }_{(q q)}$

($\mathrm{H}_{2} \mathrm{O}$ is a Pure Liquid)
(No K_{P} because there are no gases.)

Multiple Equilibria: - the overall equilibrium constant of a multi-steps systems is the product of all the equilibrium constants of the individual steps involved.

Consider the following multiple equilibria:

$$
\begin{array}{rl}
\text { Step 1: A + B } \rightleftharpoons \mathbf{C}+\mathbf{D} & K_{1}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]} \\
\text { Step 2: } \mathbf{C}+\mathbf{D} \rightleftharpoons \mathbf{E}+\mathbf{F} & K_{2}=\frac{[\mathrm{E}][\mathrm{F}]}{[\mathrm{C}][\mathrm{D}]} \\
\hline \mathbf{A}+\mathbf{B} \rightleftharpoons \mathbf{E}+\mathbf{F} & K
\end{array}
$$

Multiple Equilibria

$K=K_{1} \times K_{2} \times K_{3} \times \ldots$

Working with Equilibrium Constant and Equations:

- reversing equilibrium reaction will cause the reciprocate the equilibrium constant ($1 / K$)
- multiplying the equation by a multiple n will result in raising the K by the power of \boldsymbol{n}.

Reversing Equilibrium Reaction$\begin{gathered} \boldsymbol{a} \mathbf{A}+\boldsymbol{b B} \rightleftharpoons c \mathbf{C}+d \mathrm{D} \rightarrow \boldsymbol{\mathrm { C }}+\boldsymbol{d \mathrm { D }} \rightleftharpoons \boldsymbol{a} \mathbf{A}+\boldsymbol{b B} \\ \boldsymbol{K}^{\prime}=\frac{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}=\left(\frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}\right)^{-1}=\boldsymbol{K}^{-1}=\frac{\mathbf{1}}{\boldsymbol{K}} \\ \boldsymbol{K}^{\prime}=\text { Reverse Equilibrium Constant } \end{gathered}$	
	$n(a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D}) \rightarrow n a \mathrm{~A}+n b \mathrm{~B} \rightleftharpoons n c \mathrm{C}+n d \mathrm{D})$
	$K^{\prime \prime}=\frac{[\mathbf{C}]^{n c}[\mathbf{D}]^{n d}}{[\mathbf{A}]^{n a}[\mathbf{B}]^{n b}}=\left(\frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}\right)^{n}=K^{n}$
	$K "=$ New Equilibrium Constant

Example 6: For the following reaction and the equilibrium concentrations at 300 K .

$$
\begin{aligned}
& 2 \mathrm{C}_{3} \mathrm{H}_{6(g)}+2 \mathrm{NH}_{3(g)}+3 \mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)} \\
& {\left[\mathrm{C}_{3} \mathrm{H}_{6}\right]_{e q}=0.500 \mathrm{M}} \\
& {\left[\mathrm{NH}_{3}\right]_{e q}=0.250 \mathrm{M}} \\
& {\left[\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\right]_{e q}=2.50 \mathrm{M}} \\
& {\left[\mathrm{H}_{2} \mathrm{O}\right]_{e q}=3.00 \mathrm{M}}
\end{aligned}
$$

a. Write the equilibrium expression and determine the equilibrium constant.
b. Write the equilibrium expression and calculate the equilibrium constant for the following reaction with the same equilibrium concentrations.

$$
2 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons 2 \mathrm{C}_{3} \mathrm{H}_{6(\mathrm{~g})}+2 \mathrm{NH}_{3(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})}
$$

c. Write the equilibrium expression and find the equilibrium constant for the following reaction with the same equilibrium concentrations.

$$
\mathrm{C}_{3} \mathrm{H}_{6(g)}+\mathrm{NH}_{3(g)}+\frac{3}{2} \mathrm{O}_{2(g)} \rightleftharpoons \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{(g)}+3 \mathrm{H}_{2} \mathrm{O}_{(g)}
$$

a. Equilibrium Expression:

Equilibrium Constant: $\quad K=\frac{\left[\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{C}_{3} \mathrm{H}_{6}\right]^{2}\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{3}}=\frac{(2.50)^{2}(3.00)^{6}}{(0.500)^{2}(0.250)^{2}(0.350)^{3}} \quad K=\mathbf{6 . 8 0} \times 10^{6}$
b. Equilibrium Expression: $K^{\prime}=\frac{\left[\mathrm{C}_{3} \mathrm{H}_{6}\right]^{2}\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{3}}{\left[\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}} \quad$ (Reverse Equilibrium)

Equilibrium Constant: $\quad K^{\prime}=\frac{\left[\mathrm{C}_{3} \mathrm{H}_{6}\right]^{2}\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{3}}{\left[\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}=\left(\frac{\left[\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{C}_{3} \mathrm{H}_{6}\right]^{2}\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{3}}\right)^{-1}=K^{-1}$

$$
K^{\prime}=\left(6.80 \times 10^{6}\right)^{-1}
$$

$K^{\prime}=1.47 \times 10^{-7}$
c. Equilibrium Expression: $K^{\prime \prime}=\frac{\left[\mathrm{C}_{3} \mathrm{H}_{3} \mathbf{N}\right]\left[\mathrm{H}_{2} \mathbf{O}\right]^{3}}{\left[\mathrm{C}_{3} \mathbf{H}_{6}\right]\left[\mathrm{NH}_{3}\right]\left[\mathrm{O}_{2}\right]^{\frac{3}{2}}}$
Equilibrium Constant: $\quad K^{\prime \prime}=\frac{\left[\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{3}}{\left[\mathrm{C}_{3} \mathrm{H}_{6}\right]\left[\mathrm{NH}_{3}\right]\left[\mathrm{O}_{2}\right]^{\frac{3}{2}}}=\left(\frac{\left[\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{C}_{3} \mathrm{H}_{6}\right]^{2}\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{3}}\right)^{\frac{1}{2}}=K^{\frac{1}{2}}$

$$
K^{\prime \prime}=\left(6.80 \times 10^{6}\right)^{\frac{1}{2}}
$$

$$
K^{\prime \prime}=2.61 \times 10^{3}
$$

Assignment

14.2 pg. 633-635 \#5 to 11, 13, 14, 16, 18, 20, 22 to 24, 26 to 28, 30 to 32; pg. 639 \#92

14.3: The Relationship Between Chemical Kinetics and Chemical Equilibrium

Suppose we have the following elementary steps of an overall system, $a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D}$

Step 1: $\quad a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons n \mathrm{AB} \quad$ (at a specific T, the forward rate $=$ reverse rate)

$$
k_{\mathrm{f}, 1}[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}=k_{\mathrm{r}, 1}[\mathrm{AB}]^{n}
$$

Step 2: $\quad n A B \rightleftharpoons c \mathrm{C}+d \mathrm{D} \quad$ (at the same specific T, the forward rate $=$ reverse rate $)$

$$
k_{\mathrm{f}, 2}[\mathrm{AB}]^{n}=k_{\mathrm{r}, 2}[\mathrm{C}]^{c}[\mathrm{D}]^{d}
$$

Overall: $\quad a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D}$

Equilibrium Constant (K) can be written as the ratio of rate constants of the forward and reverse reactions.
For Step 1, we have $K_{1}=\frac{k_{f, 1}}{k_{r, 1}}=\frac{[\mathrm{AB}]^{n}}{[\mathrm{~A}]^{d}[\mathrm{~B}]^{b}}$. Similarly, for Step 2, we have $K_{2}=\frac{k_{f, 2}}{k_{r, 2}}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{AB}]^{n}}$.

From what we have learned about multiple equilibria (section 14.2), $K=K_{1} \times K_{2}$. Therefore,

$$
K=\frac{k_{f, 1}}{k_{r, 1}} \times \frac{k_{f, 2}}{k_{r, 2}} \longrightarrow K=\frac{[\mathrm{AB}]^{n}}{[\mathrm{~A}]^{[}[\mathrm{B}]^{0}} \times \frac{[\mathrm{C}]^{k}[\mathrm{D}]^{d}}{[\mathrm{AB}]^{n}}
$$

Now, the overall reaction of, $a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D}$, would have an equilibrium expression of $\boldsymbol{K}=\frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}$.

Since the rate constant is dependent on temperature, and equilibrium constant is a ratio of rate constants,
Equilibrium Constant (K) is highly dependent on temperature (T).

Assignment

14.3 pg. 635 \#33 and 34

14.4: What Does the Equilibrium Constant Tell Us?

Important Notes Regarding the Size of the Equilibrium Constant (K):

$$
\begin{gathered}
\boldsymbol{a} \mathbf{A}+\mathbf{b B} \rightleftharpoons c \mathbf{C}+\boldsymbol{d} \mathbf{D} \\
\boldsymbol{K}=\boldsymbol{K}_{c}=\frac{[\mathbf{C}]_{e q}^{c}[\mathbf{D}]_{e q}^{d}}{[\mathbf{A}]_{e q}^{a}[\mathbf{B}]_{e q}^{b}} \quad \quad K_{P}=\frac{\boldsymbol{P}_{\mathbf{C}, e q}^{c} \boldsymbol{P}_{\mathbf{D}, e q}^{d}}{\mathbf{P}_{\mathbf{A}, e q}^{a} \boldsymbol{P}_{\mathbf{B}, e q}^{b}}
\end{gathered}
$$

1. When $\underline{K \gg 1}$, the equilibrium system favours the products. There are more products than reactants at the state of equilibrium. ($[\mathrm{C}]_{e q}$ and $[\mathrm{D}]_{e q}$ or $P_{\mathrm{C}, e q}$ and $P_{\mathrm{D}, e q} \gg[\mathrm{~A}]_{e q}$ and $[\mathrm{B}]_{e q}$ or $P_{\mathrm{A}, e q}$ and $P_{\mathrm{B}, e q}$)
2. When $K \ll 1$, the equilibrium system favours the reactants. There are less products than reactants at the state of equilibrium. ([A] $]_{e q}$ and $[\mathrm{B}]_{e q}$ or $P_{\mathrm{A}, e q}$ and $P_{\mathrm{B}, e q} \gg[\mathrm{C}]_{e q}$ and $[\mathrm{D}]_{e q}$ or $P_{\mathrm{C}, e q}$ and $P_{\mathrm{D}, e q}$)
3. When $K \approx 1$, the equilibrium system favours neither the products nor the reactants. There are roughly the same amount of products and reactants at the state of equilibrium. ([C] $]_{e q}$ and $[\mathrm{D}]_{e q}$ or $P_{\mathrm{C}, e q}$ and $P_{\mathrm{D}, e q} \approx[\mathrm{~A}]_{e q}$ and $[\mathrm{B}]_{e q}$ or $P_{\mathrm{A}, e q}$ and $P_{\mathrm{B}, e q}$)
4. The Size of K has NO Relationship with the Rate of Reaction to reach the state of equilibrium. Reaction Rate is dependent on Activation Energy and Temperature (T) (NOT K).
5. The Size of K depends on Free Energy (G) and Temperature (T).

Reaction Quotient (\mathbf{Q}): - the mass action expression under any set of conditions (not necessarily equilibrium).

- its magnitude relative to K determines the direction in which the reaction must occur to establish equilibrium.

$$
\boldsymbol{Q}=\frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{[}[\mathbf{B}]^{b}}
$$

a. When $Q>K$, the system shifts to the reactants. At a specific condition, \underline{Q} indicates that there are too much products. Therefore, the system has to shift back to the left.
b. When $Q<K$, the system shifts to the products. At a specific condition, \boldsymbol{Q} indicates that there are not enough products. Therefore, the system has to shift forward to the right.
c. When $Q=K$, the system is at equilibrium. At a specific condition, Q indicates that all concentrations are that of the equilibrium state. Therefore, there will be no shifting.

Example 1: The reaction, $2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}$ has an equilibrium constant of $K=29.54$ at 600 K . Indicate the direction in which the system will shift to reach equilibrium when the $[\mathrm{NO}]_{0}=$ $0.300 \mathrm{M},\left[\mathrm{O}_{2}\right]_{0}=0.250 \mathrm{M}$, and $\left[\mathrm{NO}_{2}\right]_{0}=0.500 \mathrm{M}$.

$$
\begin{aligned}
& {[\mathrm{NO}]_{0}=0.300 \mathrm{M}} \\
& {\left[\mathrm{O}_{2}\right]_{0}=0.250 \mathrm{M}} \\
& {\left[\mathrm{NO}_{2}\right]_{0}=0.500 \mathrm{M}} \\
& \boldsymbol{Q}=\boldsymbol{?}
\end{aligned}
$$

$$
Q=\frac{\left[\mathrm{NO}_{2}\right]_{0}^{2}}{[\mathrm{NO}]_{0}^{2}\left[\mathrm{O}_{2}\right]_{0}}=\frac{(0.500)^{2}}{(0.300)^{2}(0.250)} \quad Q=\mathbf{1 1 . 1}
$$

Since $\underline{Q}<K(11.1<29.54)$, the system will shift to the product $\left(\mathrm{NO}_{2}\right)$. There are not enough NO_{2} at the initial conditions.

Example 2: The reaction, $\mathrm{Cl}_{2(\mathrm{~g})}+3 \mathrm{~F}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{ClF}_{3(\mathrm{~g})}$ at 350 K has $K=50.2$, If the equilibrium concentrations of $\mathrm{Cl}_{2(\mathrm{~g})}$ and $\mathrm{ClF}_{3(\mathrm{~g})}$ are 0.149 M and 0.205 M respectively, what is the equilibrium concentration of $\mathrm{F}_{2(\mathrm{~g})}$?
$\left[\mathrm{Cl}_{2}\right]_{\text {eq }}=0.149 \mathrm{M}$
$\left[\mathrm{ClF}_{3}\right]_{\text {eq }}=0.205 \mathrm{M}$
$K=50.2$
$\left[\mathrm{F}_{2}\right]_{\text {eq }}=$?
$K=\frac{\left[\mathrm{ClF}_{3}\right]_{e q}^{2}}{\left[\mathrm{Cl}_{2}\right]_{e q}\left[\mathrm{~F}_{2}\right]_{e q}^{3}}$
$50.2=\frac{(0.205)^{2}}{(0.149)\left[\mathrm{F}_{2}\right]_{\text {eq }}^{3}}$
$\left[\mathrm{F}_{2}\right]^{3}{ }^{3}{ }^{\text {eq }}=\frac{(0.205)^{2}}{(50.2)(0.149)}$
$\left[\mathrm{F}_{2}\right]_{\text {eq }}=\sqrt[3]{\frac{(0.205)^{2}}{(50.2)(0.149)}}$

ICE Box: - stands for Initial, Change, and Equilibrium. It is a table that organizes information to calculate final equilibrium concentrations given the equilibrium constant and initial concentration.

Example 3: The formation of $\mathrm{HCl}_{(\mathrm{g})}$ from its elements, $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HCl}_{(\mathrm{g})}$ has $K=0.404$ at 250 K . A 5.00 L flask at 250 K contained an initial concentration of 3.00 mol of $\mathrm{HCl}_{(\mathrm{gg})}$ and 3.85 mol of $\mathrm{H}_{2(\mathrm{~g})}$. When the system reached equilibrium, it was found that there were $0.860 \mathrm{~mol}^{\text {of }} \mathrm{Cl}_{2(\mathrm{~g})}$. Determine the concentrations of $\mathrm{H}_{2(\mathrm{~g})}$ and $\mathrm{HCl}_{(\mathrm{g})}$ at equilibrium.
$K=0.404$
$\left[\mathrm{H}_{2}\right]_{0}=\frac{3.85 \mathrm{~mol}}{5.00 \mathrm{~L}}=0.770 \mathrm{M}$
$[\mathrm{HCl}]_{0}=\frac{3.00 \mathrm{~mol}}{5.00 \mathrm{~L}}=0.600 \mathrm{M}$
$\left[\mathrm{Cl}_{2}\right]_{0}=0 \mathrm{M}$
$\left[\mathrm{Cl}_{2}\right]_{\text {eq }}=\frac{0.860 \mathrm{~mol}}{5.00 \mathrm{~L}}=0.172 \mathrm{M}$

The system must shift to the left because initially, we are missing one reactant $\left(\left[\mathrm{Cl}_{2}\right]_{0}=0 \mathrm{M}\right)$. Hence, the change to the H_{2} is positive, and the change to the HCl would be negative.

Since there is 0.172 M of Cl_{2} at equilibrium, it means 0.172 M of $\mathbf{H}_{\mathbf{2}}$ is added ($1: 1 \mathrm{~mol}$ ratio between Cl_{2} and H_{2}). It also means that there is $2(0.172 \mathrm{M})$ less $\mathbf{H C l}\left(\mathbf{2 : 1} \mathbf{~ m o l}\right.$ ratio between Cl_{2} and $\left.\mathbf{H C l}\right)$.

Verify with K :

$$
K=\frac{[\mathrm{HCl}]_{e q}^{2}}{\left[\mathrm{H}_{2}\right]_{e q}\left[\mathrm{Cl}_{2}\right]_{e q}}=\frac{(0.256)^{2}}{(0.942)(0.172)}
$$

$$
K=0.404
$$

This matches with K given in the question.
Therefore, the equilibrium concentrations are:

$$
\left[\mathrm{H}_{2}\right]_{e q}=0.942 \mathrm{M},\left[\mathrm{Cl}_{2}\right]_{e q}=0.172 \mathrm{M} \text { and }[\mathrm{HCl}]_{e q}=0.256 \mathrm{M}
$$

Example 4: The reaction, $2 \mathrm{NO}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{NO}_{3(\mathrm{~g})}+\mathrm{NO}_{(\mathrm{g})}$ has $K=31.7$ at 700 K . A 2.50 L flask at 700 K has 1.00 mol of each species initially. Calculate the concentrations of all species at equilibrium.
$K=31.7$
$\left[\mathrm{NO}_{2}\right]_{0}=\frac{1.00 \mathrm{~mol}}{2.50 \mathrm{~L}}=0.400 \mathrm{M}$
$\left[\mathrm{NO}_{3}\right]_{0}=\frac{1.00 \mathrm{~mol}}{2.50 \mathrm{~L}}=0.400 \mathrm{M}$
$[\mathrm{NO}]_{0}=\frac{1.00 \mathrm{~mol}}{2.50 \mathrm{~L}}=0.400 \mathrm{M}$
$\left[\mathrm{NO}_{2}\right]_{\text {eq }}=$?
$\left[\mathrm{NO}_{3}\right]_{\text {eq }}=$?
$[\mathrm{NO}]_{e q}=$?

First, we must determine Q and the direction of the shift.

$$
Q=\frac{\left[\mathrm{NO}_{3}\right]_{0}[\mathrm{NO}]_{0}}{\left[\mathrm{NO}_{2}\right]_{0}^{2}}=\frac{(0.400)(0.400)}{(0.400)^{2}} \quad \boldsymbol{Q}=\mathbf{1 . 0 0}
$$

Since $\underline{Q}<K(1.00<31.7)$, the system will shift to the products $\left(\mathrm{NO}_{3}\right.$ and NO). There are not enough products at the initial conditions. Hence, the change to the NO_{2} is negative, and the changes to the NO_{3} and NO would be positive.

Let $x=$ amount of change per mole, since there are 2 moles of $\mathbf{N O}_{2}$ reacted; NO_{2} will be lowered by $2 x$. Similarly, NO_{3} and NO will be increased by $1 x$ each.

	$\mathbf{2 ~ N O}_{\mathbf{2}(g)}$		\rightleftharpoons	$\mathbf{N O}_{3(g)}$	+
\mathbf{l}	$\mathbf{N O}$				
(g)					

Next, we set up the equilibrium expression, substitute the above mathematical expressions and solve for x.
(Since we have a set of common exponents we can group it and square root both sides.)

$$
\begin{aligned}
K=\frac{\left[\mathrm{NO}_{3}\right]_{e q}[\mathrm{NO}]_{e q}}{\left[\mathrm{NO}_{2}\right]_{e q}^{2}} \quad 31.7 & =\frac{(0.4+x)(0.4+x)}{(0.4-2 x)^{2}}=\frac{(0.4+x)^{2}}{(0.4-2 x)^{2}}=\left[\frac{(0.4+x)}{(0.4-2 x)}\right]^{2} \\
\sqrt{31.7} & =\sqrt{\left[\frac{(0.4+x)}{(0.4-2 x)}\right]^{2}} \\
5.630275304 & =\frac{(0.4+x)}{(0.4-2 x)}
\end{aligned}
$$

$$
5.630275304(0.4-2 x)=0.4+x
$$

Finally, substitute x back into the

$$
2.252110122-11.26055061 x=0.4+x
$$ mathematical expressions.

$$
-12.26055061 x=-1.852110122
$$

$$
x=\frac{-1.852110122}{-12.26055061}
$$

$\left[\mathrm{NO}_{2}\right]_{\text {eq }}=0.400-2 x=0.400-2(0.15106)$
$\left[\mathrm{NO}_{2}\right]_{e q}=0.0979 \mathrm{M}$

$$
x=0.15106
$$

$\left[\mathrm{NO}_{3}\right]_{\text {eq }}=0.400+x=0.400+(0.15106)$

$$
\left[\mathrm{NO}_{3}\right]_{e q}=0.551 \mathrm{M}
$$

Verify with K :
$K=\frac{\left[\mathrm{NO}_{3}\right]_{e q}[\mathrm{NO}]_{e q}}{\left[\mathrm{NO}_{2}\right]_{e q}^{2}}=\frac{(0.551)(0.551)}{(0.0979)^{2}} \quad K=\mathbf{3 1 . 7}$
This matches with the K given in the question.

$$
[\mathrm{NO}]_{e q}=0.400+x=0.400+(0.15106)
$$

$[\mathrm{NO}]_{\text {eq }}=0.551 \mathrm{M}$

Using the TI-Graphing Calculator to Solve Higher Degree Equations:

Sometimes we may encounter equations with higher degrees when solving for equilibrium pressures or concentrations. In some cases, we may be able to use the quadratic formula, but for cubic and higher degrees equations, they can become quite difficult. The TI-Graphing Calculator has a SOLVE function to aide the determination of the roots.

Example: Solve for the final concentrations of both products in the following equilibrium system when the initial concentration of the reactant is $0.400 \mathrm{~mol} / \mathrm{L}$, and $K=2.4 \times 10^{-2}$.

$$
\mathrm{A}_{(g)} \rightleftharpoons \mathrm{B}_{(g)}+\mathrm{C}_{(g)}
$$

	$\mathbf{A}_{(g)}$	\rightleftharpoons	$\mathbf{B}_{(g)}$	+	$\mathrm{C}_{(g)}$
Initial	0.400 M		0 M		0 M
Change	$-x$		$+x$		+ x
Equilibrium	$(0.400-x)$ M		x M		x M

1. Manipulate the Equation so one-side is equal to $\mathbf{0}$.

Example: $2.4 \times 10^{-2}=\frac{x^{2}}{(0.4-x)} \quad$ becomes $\quad 0=\frac{x^{2}}{(0.4-x)}-2.4 \times 10^{-2}$
2. Callout the solve function.

Therefore, the concentrations of the products are:

$$
x=[\mathrm{B}]_{e q}=[\mathrm{C}]_{e q}=\mathbf{0 . 0 8 6 7} \mathrm{mol} / \mathrm{L}
$$

Example 5: The reaction, $\mathrm{SO}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{SO}_{2} \mathrm{Cl}_{2(\mathrm{~g})}$, has an equilibrium constant of 0.486 at 500 K . Determine the equilibrium concentrations of all species if there are 2.00 mol of each species in 10.0 L container at 500 K .
$K=0.486$
$\left[\mathrm{SO}_{2}\right]_{0}=\frac{2.00 \mathrm{~mol}}{10.0 \mathrm{~L}}=0.200 \mathrm{M}$
$\left[\mathrm{Cl}_{2}\right]_{0}=\frac{2.00 \mathrm{~mol}}{10.0 \mathrm{~L}}=0.200 \mathrm{M}$
$\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]_{0}=\frac{2.00 \mathrm{~mol}}{10.0 \mathrm{~L}}=0.200 \mathrm{M}$
$\left[\mathrm{SO}_{2}\right]_{\text {eq }}=$?
$\left[\mathrm{Cl}_{2}\right]_{e q}=$?
$\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]_{\text {eq }}=$?

First, we must determine Q and the direction of the shift.

$$
Q=\frac{\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]_{0}}{\left[\mathrm{SO}_{2}\right]_{0}\left[\mathrm{Cl}_{2}\right]_{0}}=\frac{(0.200)}{(0.200)(0.200)} \quad \boldsymbol{Q}=\mathbf{5 . 0 0}
$$

Since $\underline{Q>K}(5.00>0.486)$, the system will shift to the reactants $\left(\mathrm{SO}_{\mathbf{2}}\right.$ and $\left.\mathrm{Cl}_{2}\right)$. There is too much product at the initial conditions. Hence, the changes to the SO_{2} and Cl_{2} are positive, and the change to the $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ would be negative.

Let $x=$ amount of change per mole, since there is 1 mole of SO_{2} reacted; $\mathbf{S O}_{2}$ will increase by $1 x$. Similarly, Cl_{2} will increase by $1 x . \mathrm{SO}_{2} \mathrm{Cl}_{2}$, on the other hand, will decrease by $1 x$.

	$\mathbf{S O}_{\mathbf{2}(g)}$	+	$\mathbf{C l}_{\mathbf{2}(g)}$	\rightleftharpoons
	$\mathbf{S O}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}(g)}$			
Initial	0.200 M	0.200 M		
$+x$				

Next, we set up the equilibrium expression, substitute the above mathematical expressions and solve for x.
(Since we don't have any common exponent, we have to expand the denominator.)

$$
\begin{aligned}
& x=\frac{-(1.1944) \pm \sqrt{(1.1944)^{2}-4(0.486)(-0.18056)}}{2(0.486)} \\
& \boldsymbol{x}=\mathbf{0 . 1 4 2 8 7} \quad x=-2.6005(\text { omit negative } x)
\end{aligned}
$$

Verify with K :
Finally, substitute x back into the mathematical expressions.

$$
\left[\mathrm{SO}_{2}\right]_{e q}=0.200+x=0.200+(0.14287)
$$

$\left[\mathrm{SO}_{2}\right]_{\text {eq }}=0.343 \mathrm{M}$

$$
\left[\mathrm{Cl}_{2}\right]_{e q}=0.200+x=0.200+(0.14287)
$$

$\left[\mathrm{Cl}_{2}\right]_{\text {eq }}=0.343 \mathrm{M}$

$$
\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]_{e q}=0.200-x=0.200-(0.14287)
$$

$$
\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]_{e q}=0.0571 \mathrm{M}
$$

$$
\begin{aligned}
& K=\frac{\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]_{e q}}{\left[\mathrm{SO}_{2}\right]_{e q}\left[\mathrm{Cl}_{2}\right]_{e q}} \\
& 0.486=\frac{(0.2-x)}{(0.2+x)(0.2+x)}=\frac{(0.2-x)}{\left(0.04+0.4 x+x^{2}\right)} \\
& 0.486\left(0.04+0.4 x+x^{2}\right)=(0.2-x) \\
& 0.01944+0.1944 x+0.486 x^{2}=0.2-x \\
& 0.486 x^{2}+1.1944 x-0.18056=0 \quad \text { (Quadratic Equation: Apply the Quadratic Formula!) } \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad a=0.486 \quad b=1.1944 \quad c=-0.18056
\end{aligned}
$$

Steps to Solve Equilibrium Problems:

1. Write the Balanced Chemical Equation for the system. This includes all the correct states for all species.
2. Write the Equilibrium Expression and equate it to K value given.
3. List the Initial Concentrations.
4. Determine Q and compare it to K to determine the direction of the shift to equilibrium.
5. Construct the ICE Box and define the change amount of change per mole as x. Using the coefficients and the direction of the shifts, state the mathematical expressions of each species at equilibrium.
6. Solve for x after substituting the mathematical expressions into the equilibrium expression. (Look for methods of simplifying like common exponents if they exist. Otherwise, the quadratic equation will be needed to solve for x.)
7. Calculate the equilibrium concentrations of each species and verify that they indeed give the value of K.
8. For equilibrium involving pressures, the procedure is the same as above.

Example 6: The equilibrium constant for the system, $\mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}_{(\mathrm{s})}+\mathrm{HCl}_{(\mathrm{g})}$, at 283 K is 0.100. If we had 6.00 mol of $\mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}, 6.00 \mathrm{~mol}^{2} \mathrm{Cl}_{2(\mathrm{~g})}$ and $6.00 \mathrm{~mol} \mathrm{HCl}_{(\mathrm{g})}$ originally in a 3.00 L container at 283 K , determine the equilibrium concentrations for all species.

$$
\begin{aligned}
& \mathrm{K}=0.100 \\
& {\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]_{0}=\frac{6.00 \mathrm{~mol}}{3.00 \mathrm{~L}}=2.00 \mathrm{M}} \\
& {\left[\mathrm{Cl}_{2}\right]_{0}=\frac{6.00 \mathrm{~mol}}{3.00 \mathrm{~L}}=2.00 \mathrm{M}} \\
& {[\mathrm{HCl}]_{0}=\frac{6.00 \mathrm{~mol}}{3.00 \mathrm{~L}}=2.00 \mathrm{M}} \\
& {\left[\mathrm{C}_{2} \mathbf{H}_{6}\right]_{e q}=?} \\
& {\left[\mathrm{Cl}_{2}\right]_{e q}=?} \\
& {[\mathrm{HCl}]_{e q}=?}
\end{aligned}
$$

First, we must determine Q and the direction of the shift. (Be careful! This is a heterogeneous system. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ is a pure solid and it is not involved in the equilibrium expression.

$$
Q=\frac{[\mathrm{HCl}]_{0}}{\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]_{0}\left[\mathrm{Cl}_{2}\right]_{0}}=\frac{(2.00)}{(2.00)(2.00)} \quad \boldsymbol{Q}=\mathbf{0 . 5 0 0}
$$

Since $\underline{Q>K}(0.500>0.100)$, the system will shift to the reactants $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right.$ and $\left.\mathrm{Cl}_{2}\right)$. There are too much products at the initial conditions. Hence, the changes to the $\mathrm{C}_{2} \mathrm{H}_{6}$ and Cl_{2} are positive, and the change to the HCl would be negative.

Let $x=$ amount of change per mole, since there is $\mathbf{1}$ mole of $\mathrm{C}_{2} \mathbf{H}_{6}$ reacted; $\mathbf{C}_{2} \mathbf{H}_{6}$ will increase by $1 x$. Similarly, Cl_{2} will increase by $1 x . \mathrm{HCl}$, on the other hand, will decrease by $1 x$.

Next, we set up the equilibrium expression, substitute the above mathematical expressions and solve for x.
(Since we have a set of common exponents we can group it and square root both sides.)

$$
\begin{aligned}
& K=\frac{[\mathrm{HCl}]_{0}}{\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]_{0}\left[\mathrm{Cl}_{2}\right]_{0}} \quad 0.100=\frac{(2-x)}{(2+x)(2+} \begin{array}{r}
0.100\left(4+4 x+x^{2}\right)=(2-x) \\
0.4+0.4 x+0.1 x^{2}=2-x
\end{array} \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{0 a} \quad a=0.1 \quad b= \\
& x=\frac{-(1.4) \pm \sqrt{(1.4)^{2}-4(0.1)(-1.6)}}{2(0.1)} \\
& x=1.062258 \quad x=-15.06226 \text { (omit negative } x)
\end{aligned}
$$

$$
0.100=\frac{(2-x)}{(2+x)(2+x)}=\frac{(2-x)}{\left(4+4 x+x^{2}\right)}
$$

Finally, substitute x back into the mathematical expressions.
$\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]_{\text {eq }}=2.00+x=2.00+(1.062257748)$

$$
\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]_{e q}=3.06 \mathrm{M}
$$

$\left[\mathrm{Cl}_{2}\right]_{\text {eq }}=2.00+x=2.00+(1.062257748)$
$\left[\mathrm{Cl}_{2}\right]_{\text {eq }}=3.06 \mathrm{M}$
$[\mathrm{HCl}]_{\text {eq }}=2.00-x=2.00-(1.062257748)$
This matches closely with the K given in the question.

Example 7: The reaction of $\mathrm{CO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{COCl}_{2(\mathrm{~g})}$ has an equilibrium constant of $K_{P}=0.289$ at 450 K . The initial pressures of $\mathrm{CO}_{(\mathrm{g})}, \mathrm{Cl}_{2(\mathrm{~g})}$ and $\mathrm{COCl}_{2(\mathrm{~g})}$ are $0.800 \mathrm{~atm}, 0.900 \mathrm{~atm}$ and 0.150 atm respectively. They are all mixed in a 7.50 L flask at 450 K . Find the equilibrium pressures.
$K_{P}=0.289 \quad$ First, we must determine Q and the direction of the shift.
$P_{\mathrm{CO}, 0}=0.800 \mathrm{~atm}$
$P_{\mathrm{Cl}_{2}, 0}=0.900 \mathrm{~atm}$

$$
Q_{P}=0.208
$$

$P_{\mathrm{COCl}_{2}, 0}=0.150 \mathrm{~atm}$
$\boldsymbol{P}_{\mathrm{CO}, e q}=$?
$\boldsymbol{P}_{\mathrm{Cl}_{2}, \text { eq }}=$?
$\boldsymbol{P}_{\mathrm{COCl}_{2}, \text { eq }}=$?

$$
Q_{P}=\frac{P_{\mathrm{COCl}_{2}, 0}}{P_{\mathrm{CO}, 0} P_{\mathrm{Cl}_{2}, 0}}=\frac{(0.150)}{(0.800)(0.900)}
$$

Since $\underline{Q}<K(0.208<0.289)$, the system will shift to the product $\left(\mathrm{COCl}_{2}\right)$. There is too little product at the initial conditions. Hence, the changes to the CO and Cl_{2} are negative, and the change to the COCl_{2} would be positive.

Let $x=$ amount of change per mole, since there is 1 mole of CO reacted; CO will decrease by $1 x$. Similarly, Cl_{2} will decrease by $1 x . \mathrm{COCl}_{2}$, on the other hand, will increase by $1 x$.

	$\mathbf{C O}_{(g)}$	+	$\mathbf{C l}_{\mathbf{2 g})}$	\rightleftharpoons
	$\mathbf{C O C l}_{\mathbf{2 g})}$			
Initial	0.800 atm	0.900 atm		0.150 atm
Change	$-x$	$-x$		

Next, we set up the equilibrium expression, substitute the above mathematical expressions and solve for x.
(Since we don't have any common exponent, we have to expand the denominator.)

$$
\begin{aligned}
& K_{P}=\frac{P_{\mathrm{COC}_{2}, \text { eq }}}{P_{\mathrm{CO}, \text { eq } P_{\mathrm{Cl}_{2}, \text { eq }}}} \\
& 0.289=\frac{(0.15+x)}{(0.8-x)(0.9-x)}=\frac{(0.15+x)}{\left(0.72-1.7 x+x^{2}\right)} \\
& 0.289\left(0.72-1.7 x+x^{2}\right)=(0.15+x) \\
& 0.20808-0.4913 x+0.289 x^{2}=0.15+x \\
& 0.289 x^{2}-1.4913 x+0.05808=0 \quad \text { (Quadratic Equation: Apply the Quadratic Formula!) } \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad a=0.289 \quad b=-1.4913 \quad c=0.05808 \\
& x=\frac{-(-1.4913) \pm \sqrt{(-1.4913)^{2}-4(0.289)(0.05808)}}{2(0.289)} \\
& \text { Finally, substitute } x \text { back into the } \\
& \text { mathematical expressions. } \\
& x=5.120963266(\text { omit larger value }- \\
& \text { bigger than } 0.800 \mathrm{~atm} \text { and } 0.900 \mathrm{~atm} \text {) } \\
& x=0.0392443468 \\
& K_{P}=\frac{P_{\mathrm{COCl}_{2}, e q}}{P_{\mathrm{CO}, e q} P_{\mathrm{Cl}_{2}, e q}}=\frac{(0.189)}{(0.761)(0.861)} \\
& K_{P}=0.288 \quad \text { (This matches closely with } \\
& \text { the } K_{P} \text { given in the question.) } \\
& \boldsymbol{P}_{\text {CO, } e q}=0.800-x=0.800-(0.0392443468) \\
& \boldsymbol{P}_{\mathrm{Cl}_{2}, \text { eq }}=0.900-x=0.900-(0.0392443468) \\
& \begin{array}{c}
\boldsymbol{P}_{\mathrm{Cl}_{2}, \text { eq }}=\mathbf{0 . 8 6 1} \mathbf{~ a t m} \\
\boldsymbol{P}_{\text {COCl }_{2}, \text { eq }}=0.150+x=0.150+(0.0392443468)
\end{array} \\
& P_{\text {CoCl }_{2}, e q}=0.189 \mathrm{M}
\end{aligned}
$$

Assignment

14.4 pg. 635-636 \#37 to 48; pg. 637-641 \#64, 70 to 78 (even), 82, 84, 108

14.5: Factors That Affect Chemical Equilibrium

Le Châtelier's Principle: - a qualitative method to predict the shift on an equilibrium system if it is disturbed by means of changing concentration, pressure and temperature.

- the equilibrium will shift in the direction that minimizes the change imposed on the system.

1. Effects of a Change in Concentration:
a. An ADDITION of a species on one side of the equilibrium will Drive the System TOWARDS the Opposite Side. (There is more concentration of the species being added. Hence, the system will shift towards the opposite side to reduce the increased amount of that particular species.)
b. A REMOVAL of a species on one side of the equilibrium will Drive the system TOWARDS the Same Side. (There is less concentration of the species being removed. Hence, the system will shift towards the removal side to compensate.)

(1) indicates an Increase in [D]. As [D] \uparrow, equilibrium shifts to the left $(a A+b \mathbb{B} \rightleftharpoons c C+d D)$. Hence, $[\mathbf{A}]^{\uparrow},[\mathbf{B}] \uparrow$, and $[\mathbf{C}] \downarrow$.
 $[B] \uparrow,[C] \downarrow$, and $[D] \downarrow$.
(3) indicates an Increase in $[\mathrm{B}]$. As $[\mathrm{B}] \uparrow$, equilibrium shifts to the right $(a A+b B \rightleftharpoons c C+d \mathrm{D})$. Hence, $[A] \downarrow,[C] \uparrow$, and $[D] \uparrow$.
(4) indicates a Decrease in $[C] . A s[C] \downarrow$, equilibrium shifts to the right $(a A+b B \rightleftharpoons c C+d D)$. Hence, $[A] \downarrow,[B] \downarrow$, and $[D] \uparrow$.
2. Effects of a Change in Pressure:
a. Adding an Inert Gas has NO CHANGE on the equilibrium system. This is because an inert gas does not participate in the forward or reverse reaction.
b. Reducing the Volume will Drive the System TOWARDS the Side With LESS Gaseous Molecules. Since there are less space for the number of molecules, the system will have to shift to the side with lesser gaseous molecules to compensate.
c. Conversely, Expanding the Volume will Drive the System TOWARDS the Side With MORE

Gaseous Molecules. Now that there is more room for the molecules to move about, the system will shift to the side that has more gaseous molecules to adjust to the new condition.
d. When there are Equal Number of Gaseous Molecules on Both Side of the Equilibrium, any Change in Volume will NOT Affect System.

Changes in Pressures on a Gaseous Equilibrium System $a \mathrm{~A}+\boldsymbol{b B} \rightleftharpoons c \mathrm{C}+\boldsymbol{d \mathrm { D }}$ when $(c+d)>(a+b)$

 there are more gaseous molecules on the product side $[(c+d)>(a+b)]$. Hence, $[A] \downarrow,[B] \downarrow,[C] \uparrow$, and $[\mathrm{D}] \uparrow$.
(2) indicates a Decrease in Volume. As $V \downarrow$, equilibrium shifts to the left $(a A+b B \rightleftharpoons c \mathrm{C}+d \mathrm{D})$ since there are LESS gaseous molecules on the reactant side $[(c+d)>(a+b)]$. Hence, $[A] \uparrow,[B] \uparrow,[C] \downarrow$, and [D] \downarrow.
(3) indicates an Addition of an Inert Gas. There is no shifting of the equilibrium. $(a \mathrm{~A}+\boldsymbol{b B} \rightleftharpoons c \mathrm{C}+\boldsymbol{d D})$ as inert gas does not affect the system. Hence, $[A],[B],[C]$, and $[D]$ remain unchanged.
(See the Video at http://www.sasked.gov.sk.ca/docs/chemistry/mission2mars/contents/chapter3/images/pn204.mpg)
3. Effects of a Change in Temperature: - look at the energy (written in the reactant or product side) as a chemical species. Then, the predictions will be the same as those found with changing the concentrations.
a. For an Exothermic Equilibrium System:

$$
a \mathrm{~A}+\mathrm{bB} \rightleftharpoons c \mathrm{C}+d \mathrm{D}+\text { Energy }
$$

- an Increase in Temperature will drive the system to the left $(a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+\boldsymbol{d D}+$ Energy $)$. There is more heat added and because energy is written on the product side, the system will shift to the opposite side to re-establish equilibrium. Hence, $[\mathbf{A}] \uparrow,[\mathbf{B}] \uparrow,[\mathbf{C}] \downarrow$, and $[\mathbf{D}] \downarrow$.
- a Decrease in Temperature will drive the system to the right ($a \mathrm{~A}+b \overrightarrow{\mathrm{~B}} \rightleftharpoons c \mathrm{C}+d \mathrm{D}+$ Energy) . There is less heat overall and because energy is written on the product side, the system will shift to the products to compensate. Hence, $[\mathbf{A}] \downarrow,[\mathbf{B}] \downarrow,[\mathbf{C}] \uparrow$, and $[\mathbf{D}] \uparrow$.
b. For Endothermic Equilibrium System: $\quad \boldsymbol{a A}+\boldsymbol{b B}+$ Energy $\rightleftharpoons c \mathrm{C}+\boldsymbol{d D}$
- a Decrease in Temperature will drive the system to the left $(a \mathrm{~A}+b \mathrm{~B}+$ Energy $\rightleftharpoons c \mathrm{C}+d \mathrm{D})$. There is less heat overall and because energy is written on the reactant side, the system will shift to the reactants to compensate. Hence, $[\mathbf{A}] \uparrow,[\mathbf{B}] \uparrow,[\mathbf{C}] \downarrow$, and $[\mathbf{D}] \downarrow$.
- an Increase in Temperature will drive the system to the right $(a A+b B+$ Energy $\rightleftharpoons c \mathrm{C}+\boldsymbol{d D})$. There is more heat added and because energy is written on the reactant side, the system will shift to the opposite side to re-establish equilibrium. Hence, $[\mathbf{A}] \downarrow,[\mathbf{B}] \downarrow,[\mathbf{C}] \uparrow$, and $[\mathbf{D}] \uparrow$.

Changes in Temperature on an Exothermic
Equilibrium System $\boldsymbol{a A}+\boldsymbol{b B} \rightleftharpoons c \mathrm{C}+\boldsymbol{d} \mathrm{D}+$ Energy

Changes in Temperature on an Endothermic
Equilibrium System $a \mathrm{~A}+\boldsymbol{b B}+$ Energy $\rightleftharpoons c \mathrm{C}+\boldsymbol{d} \mathrm{D}$

(1) indicates a Decrease in Temperature. As $T \downarrow$, equilibrium shifts to the right of an exothermic system $(\boldsymbol{a} \mathbf{A}+\boldsymbol{b B} \rightleftharpoons \boldsymbol{c} \mathbf{C}+\boldsymbol{d D}+$ Energy $)$. Hence, $[\mathrm{A}] \downarrow,[\mathrm{B}] \downarrow,[\mathrm{C}] \uparrow$, and $[\mathrm{D}] \uparrow$.
(2) indicates an Increase in Temperature. As $T \uparrow$, equilibrium shifts to the left of an exothermic system $(\boldsymbol{a} \mathbf{A}+\boldsymbol{b B} \rightleftharpoons \boldsymbol{c} \mathbf{C}+\boldsymbol{d D}+$ Energy $)$. Hence, $[\mathrm{A}] \uparrow,[\mathrm{B}] \uparrow,[\mathrm{C}] \downarrow$, and $[\mathrm{D}] \downarrow$.
(3) indicates an Increase in Temperature. As $T \uparrow$, equilibrium shifts to the right of an endothermic reaction $(\boldsymbol{a} \mathbf{A}+\boldsymbol{b B}+$ Energ $\underset{\boldsymbol{c}}{ } \mathrm{C}+\boldsymbol{d D})$. Hence, $[\mathrm{A}] \downarrow,[\mathrm{B}] \downarrow,[\mathrm{C}] \uparrow$, and $[\mathrm{D}] \uparrow$.
(4) indicates a Decrease in Temperature. As $T \downarrow$, equilibrium shifts to the left of an endothermic reaction $(\boldsymbol{a} \mathbf{A}+\boldsymbol{b B}+$ Energy $\rightleftharpoons \boldsymbol{c} \mathbf{C}+\boldsymbol{d D})$. Hence, $[\mathbf{A}]^{\uparrow},[\mathrm{B}] \uparrow,[\mathbf{C}] \downarrow$, and $[\mathrm{D}] \downarrow$.

4. Effects of Adding a Catalyst: - has NO CHANGE on the equilibrium system.

(See Video at http://www.sasked.gov.sk.ca/docs/chemistry/mission2mars/contents/chapter3/images/catalyst.avi)

Example 1: The equilibrium system, $4 \mathrm{PF}_{3(\mathrm{~g})} \rightleftharpoons \mathrm{P}_{4(\mathrm{~s})}+6 \mathrm{~F}_{2(\mathrm{~g})}+1578 \mathrm{~kJ}$, is put under the following changes. Predict the shift of the system and the resulting concentrations of all species for each case.
a. an increase in the concentration of $\mathrm{F}_{2(\mathrm{~g})}$.

The system will shift to the LEFT.

$$
4 \mathrm{PF}_{3(g)} \rightleftharpoons \mathrm{P}_{4(\mathrm{~s})}+6 \mathrm{~F}_{2(g)} \uparrow+1578 \mathrm{~kJ}
$$

Effect: $\left[\mathrm{PF}_{3}\right] \uparrow$ (increase)
c. a decrease in the concentration of $\mathrm{PF}_{3(\mathrm{~g})}$.

The system will shift to the LEFT.
$4 \mathbf{P F}_{\mathbf{3}(\mathrm{g})} \downarrow \rightleftharpoons \mathrm{P}_{4(\mathrm{~s})}+6 \mathrm{~F}_{2(\mathrm{~g})}+1578 \mathrm{~kJ}$
Effect: $\left[\mathrm{F}_{2}\right] \downarrow$ (decrease)
e. an addition of $\mathrm{He}_{(\mathrm{g})}$.

There will be NO SHIFT on the system.

$$
4 \mathrm{PF}_{3(\mathrm{~g})} \rightleftharpoons \mathrm{P}_{4(\mathrm{~s})}+6 \mathrm{~F}_{2(\mathrm{~g})}+1578 \mathrm{~kJ}
$$

(He is an inert gas and does not involve with the equilibrium system)
Effect: $\left[\mathrm{PF}_{3}\right]$ and $\left[\mathrm{F}_{2}\right]$ remain the same.
b. a decrease in the concentration of $\mathrm{P}_{4(\mathrm{~s})}$

There will be NO SHIFT on the system.

$$
4 \mathrm{PF}_{3(\mathrm{~g})} \rightleftharpoons \mathbf{P}_{4(\mathrm{~s})} \downarrow+6 \mathrm{~F}_{2(\mathrm{~g})}+1578 \mathrm{~kJ}
$$

(P_{4} is a pure solid and does not involve with the equilibrium system)

Effect: $\left[\mathrm{PF}_{3}\right]$ and $\left[\mathrm{F}_{2}\right]$ remain the same.
d. a decrease in Temperature.

The system will shift to the RIGHT.

$$
4 \mathrm{PF}_{3(\mathrm{~g})} \rightleftharpoons \mathrm{P}_{4(\mathrm{~s})}+6 \mathrm{~F}_{2(\mathrm{~g})}+\mathbf{1 5 7 8} \mathrm{kJ} \downarrow
$$

Effect: $\left[\mathrm{PF}_{3}\right] \downarrow$ (decrease) and $\left[\mathrm{F}_{2}\right] \uparrow$ (increase)
f. an increase in volume.

The system will shift to the RIGHT.

$$
4 \mathrm{PF}_{3(\mathrm{~g})} \rightleftharpoons \mathrm{P}_{4(\mathrm{~s})}+6 \mathrm{~F}_{2(\mathrm{~g})}+1578 \mathrm{~kJ}
$$

(There are more gaseous molecules on the product side - 6 moles of $F_{2(g)}$ versus 4 moles of $\mathrm{PF}_{3}(\mathrm{~g})$)

Effect: $\left[\mathrm{PF}_{3}\right] \downarrow$ (decrease) and $\left[\mathrm{F}_{2}\right] \uparrow$ (increase)

Example 2: The Haber-Bosch process, $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}+92 \mathrm{~kJ}$ is essentially an equilibrium system. A chemical engineer would like the highest yield of ammonia. List all the possible method of production that will ensure maximum amount of $\mathrm{NH}_{3(\mathrm{~g})}$ produced.

$$
\begin{gathered}
\mathbf{N}_{2(g)}+3 \mathbf{H}_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3(g)}+92 \mathrm{~kJ} \\
\text { (Desire Effect: }\left[\mathrm{NH}_{3}\right] \uparrow, \text { which means driving the system forward.) }
\end{gathered}
$$

1. Increase the concentrations of $\mathbf{N}_{2(q)}$ or $\mathbf{H}_{2(q)}$ or both will drive the system forward.
2. Decrease the concentration of $\mathrm{NH}_{3(q)}$ as it is produced will shift the system forward.
3. Lower the Temperature will drive the system to the product side.
4. Decrease the Volume of the system will shift the system to the right due to smaller number of gaseous molecules on the product side.

Assignment

14.5 pg. 636-640 \#49 to 52, 56 to 62 (even), 65 to 69, 90, 98, 106

18.6: Free Energy and Chemical Equilibrium

Relationship between Free Energy and Pressure: - the free energy of a gas at any pressure, G, can be calculated when comparing it to the free energy at standard pressures (1 atm), G°, along with the stated temperature in Kelvin and the gas constant.

Relationship between Free Energy and Pressure

$$
G=G^{\circ}+R T \ln (P)
$$

$G=$ Free Energy (\mathbf{J}) of the gas at Pressure of P atm $G^{\circ}=$ Free Energy (J) of gas at Standard Pressure of 1 atm
$R=$ Gas Constant $8.314 \mathrm{~J} / \mathrm{K}$
$T=$ Temperature in K
$P=$ Pressure of Gas in atm

When $P=1 \mathrm{~atm}$, then $G=G^{\circ}+R T \ln (1)$ and $G=G^{\circ}$ because $\ln (1)=0$

Calculating the ΔG of a System with Gaseous Products and Reactants at any Pressure, P :

$$
a \mathbf{A}_{(g)}+b \mathrm{~B}_{(g)} \rightleftharpoons c \mathrm{C}_{(g)}+d \mathrm{D}_{(g)}
$$

$\Delta G=c G_{\mathrm{C}}+d G_{\mathrm{D}}-a G_{\mathrm{A}}-b G_{\mathrm{B}}$
$\left(\Delta G=\Sigma n G_{\text {products }}-\Sigma n G_{\text {reactants }}\right)$
$\Delta G=c\left[G^{\circ}{ }_{\mathrm{C}}+R T \ln \left(P_{\mathrm{C}}\right)\right]+d\left[G^{\circ}{ }_{\mathrm{D}}+R T \ln \left(P_{\mathrm{D}}\right)\right]-a\left[G^{\circ}{ }_{\mathrm{A}}+R T \ln \left(P_{\mathrm{A}}\right)\right]-b\left[G^{\circ}{ }_{\mathrm{B}}+R T \ln \left(P_{\mathrm{B}}\right)\right]$
(Expand each term using $G=G^{\circ}+R T \ln (P)$)
$\Delta G=c G^{\circ}{ }_{\mathrm{C}}+c R T \ln \left(P_{\mathrm{C}}\right)+d G^{\circ}{ }_{\mathrm{D}}+d R T \ln \left(P_{\mathrm{D}}\right)-a G^{\circ}{ }_{\mathrm{A}}-a R T \ln \left(P_{\mathrm{A}}\right)-b G^{\circ}{ }_{\mathrm{B}}-b R T \ln \left(P_{\mathrm{B}}\right)$
(Multiply moles into each brackets)
$\Delta G=\left[c G^{\circ}{ }_{\mathrm{C}}+d G^{\circ}{ }_{\mathrm{D}}-a G^{\circ}{ }_{\mathrm{A}}-b G^{\circ}{ }_{\mathrm{B}}\right]+c R T \ln \left(P_{\mathrm{C}}\right)+d R T \ln \left(P_{\mathrm{D}}\right)-a R T \ln \left(P_{\mathrm{A}}\right)-b R T \ln \left(P_{\mathrm{B}}\right)$
$\left(\right.$ Collect G° terms: $\left.\left[c G^{\circ}{ }_{\mathrm{C}}+d G^{\circ}{ }_{\mathrm{D}}-a G^{\circ}{ }_{\mathrm{A}}-b G^{\circ}{ }_{\mathrm{B}}\right]=\Delta G^{\circ}\right)$
$\Delta G=\Delta G^{\circ}+R T\left[c \ln \left(P_{\mathrm{C}}\right)+d \ln \left(P_{\mathrm{D}}\right)-a \ln \left(P_{\mathrm{A}}\right)-b \ln \left(P_{\mathrm{B}}\right)\right] \quad$ (Take out common factor $R T$ from other terms)
$\Delta G=\Delta G^{\circ}+R T\left[\ln \left(P_{\mathrm{C}}{ }^{c}\right)+\ln \left(P_{\mathrm{D}}{ }^{d}\right)-\ln \left(P_{\mathrm{A}}{ }^{a}\right)-\ln \left(P_{\mathrm{B}}{ }^{b}\right)\right] \quad$ (Apply law of logarithm: $n \log x=\log x^{n}$)
$\Delta G=\Delta G^{\circ}+R T \ln \left(\frac{P_{\mathrm{C}}^{c} P_{\mathrm{D}}^{d}}{P_{\mathrm{A}}^{a} P_{\mathrm{B}}^{b}}\right) \quad$ [Apply logarithm laws: $\log m+\log n=\log (m n)$ and $\log m-\log n=\log (m / n)$]
$\Delta G=\Delta G^{\circ}+R T \ln (Q)$
[Substitute Reaction Q as $\left(\frac{P_{\mathrm{C}}^{c} P_{\mathrm{D}}^{d}}{P_{\mathrm{A}}^{a} P_{\mathrm{B}}^{b}}\right)$]
$\underline{\text { Free Energy and Pressures of Gaseous System } a A_{(q)}+b B_{(q)} \rightleftharpoons c C_{(q)}+d D_{(q)}}$

$$
\Delta G=\Delta G^{\circ}+R T \ln (Q)
$$

$\Delta G=$ Free Energy (J) of the gas at Pressure of P atm
$R=$ Gas Constant $8.314 \mathrm{~J} / \mathrm{K}$
$\Delta G^{\circ}=$ Free Energy (J) of gas at Standard Pressure of 1 atm
T = Temperature in K
$\boldsymbol{Q}=$ Reaction Quotient of Gaseous Species $=\left(\frac{\boldsymbol{P}_{\mathrm{C}}^{c} \boldsymbol{P}_{\mathrm{D}}^{d}}{\boldsymbol{P}_{\mathrm{A}}^{a} \boldsymbol{P}_{\mathrm{B}}^{\boldsymbol{b}}}\right)$
When $Q=1$, then $\Delta G=\Delta G^{\circ}+R T \ln (1)$ and $\Delta G=\Delta G^{\circ}$ because $\ln (1)=0$

Example 1: At $25^{\circ} \mathrm{C}$, the system, $2 \mathrm{NO}_{(g)}+\mathrm{Cl}_{2(g)} \rightleftharpoons 2 \mathrm{NOCl}_{(g)}$ has the following partial pressures of $\mathrm{NO}_{(g)}$, $\mathrm{Cl}_{2(\mathrm{~g})}$, and $\mathrm{NOCl}_{(\mathrm{g})}$ are $2.40 \mathrm{~atm}, 5.30 \mathrm{~atm}$ and 3.25 atm respectively. Determine the change in free energy for the system at the partial pressures indicated. (G° of $\mathrm{NO}_{(g)}=87 \mathrm{~kJ} / \mathrm{mol}, G^{\circ}$ of $\mathrm{Cl}_{2(\mathrm{~g})}=0 \mathrm{~kJ} / \mathrm{mol}$ and G° of $\left.\mathrm{NOCl}_{(\mathrm{g})}=66 \mathrm{~kJ} / \mathrm{mol}\right)$
$G^{\circ}{ }_{\mathrm{NO}}=87 \mathrm{~kJ} / \mathrm{mol}$
$G^{\circ}{ }^{\circ} \mathrm{Cl}_{2}=0 \mathrm{~kJ} / \mathrm{mol}$
$G^{\circ}{ }_{\mathrm{NOCl}}=66 \mathrm{~kJ} / \mathrm{mol}$
$P_{\mathrm{NO}}=2.40 \mathrm{~atm}$
$P_{\mathrm{Cl}_{2}}=5.30 \mathrm{~atm}$
$P_{\mathrm{NOCl}}=3.25 \mathrm{~atm}$
$T=25^{\circ} \mathrm{C}=298.15 \mathrm{~K}$
$\Delta G^{\circ}=$? $\quad Q=$?
$\Delta G=$?

$$
2 \mathrm{NO}_{(g)}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NOCl}_{(\mathrm{g})}
$$

$$
\Delta G^{\circ}=\Sigma G^{\circ}{ }_{\text {products }}-\Sigma G^{\circ} \text { reactants }
$$

$$
\Delta G^{\circ}=[(2 \mathrm{~mol})(66 \mathrm{~kJ} / \mathrm{mol})]-[(2 \mathrm{~mol})(87 \mathrm{~kJ} / \mathrm{mel})+(1 \mathrm{~mol})(0 \mathrm{~kJ} / \mathrm{mol})]
$$

$$
\Delta G^{\circ}=-42 \mathrm{~kJ}=-4.2 \times 10^{4} \mathrm{~J}\left(\Delta G^{\circ}<0 ; \text { Forward Reaction is Spontaneous }\right)
$$

$$
Q=\frac{P^{2}{ }_{\mathrm{NoCl}_{2}}}{P^{2}{ }_{\mathrm{No}} P_{\mathrm{Cl}_{2}}}=\frac{(3.25)^{2}}{(2.40)^{2}(5.30)}
$$

$$
Q=0.3459938417
$$

$$
\Delta G=\Delta G^{\circ}+R T \ln (Q)
$$

$$
\Delta G=\left(-4.2 \times 10^{4} \mathrm{~J}\right)+(8.314 \mathrm{~J} / \mathrm{K})(298.15 \mathrm{~K}) \ln (0.3459938417)
$$

$\Delta G=-44630.85574 \mathrm{~J}$

$$
\Delta G=-45 \mathrm{~kJ}
$$

(It became more spontaneous towards the product side. This probably means that $Q<K$ or $K>0.346$)

Example 2: At $25^{\circ} \mathrm{C}$, the system, $\mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{Cl}_{2} \mathrm{O}_{(g)} \rightleftharpoons 2 \mathrm{HOCl}_{(g)}$ has the following partial pressures of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}, \mathrm{Cl}_{2} \mathrm{O}_{(\mathrm{g})}$, and $\mathrm{HOCl}_{(\mathrm{g})}$ are $0.350 \mathrm{~atm}, 0.220 \mathrm{~atm}$ and 0.860 atm respectively.
Determine the change in free energy for the system at the partial pressures indicated. (G° of $\mathrm{H}_{2} \mathrm{O}_{(g)}=-229 \mathrm{~kJ} / \mathrm{mol}, G^{\circ}$ of $\mathrm{Cl}_{2} \mathrm{O}_{(g)}=98 \mathrm{~kJ} / \mathrm{mol}$ and G° of $\left.\mathrm{HOCl}_{(g)}=0 \mathrm{~kJ} / \mathrm{mol}\right)$
$G^{\circ}{ }_{\mathrm{H}_{2} \mathrm{O}}=-229 \mathrm{~kJ} / \mathrm{mol}$

$$
\mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{Cl}_{2} \mathrm{O}_{(g)} \rightleftharpoons 2 \mathrm{HOCl}_{(g)}
$$

$G^{\circ}{ }_{\mathrm{Cl}_{2} \mathrm{O}}=98 \mathrm{~kJ} / \mathrm{mol}$
$\Delta G^{\circ}=\Sigma G^{\circ}{ }_{\text {products }}-\Sigma G^{\circ}{ }_{\text {reactants }}$
$G^{\circ}{ }_{\mathrm{HOCl}}=0 \mathrm{~kJ} / \mathrm{mol}$
$P_{\mathrm{H}_{2} \mathrm{O}}=0.350 \mathrm{~atm}$
$P_{\mathrm{Cl}_{2} \mathrm{O}}=0.220 \mathrm{~atm}$
$P_{\mathrm{HOCl}}=0.860 \mathrm{~atm}$
$\Delta G^{\circ}=[(2 \mathrm{~mol})(0 \mathrm{~kJ} / \mathrm{mol})]-[(1 \mathrm{~mol})(-229 \mathrm{~kJ} / \mathrm{mol})+(1 \mathrm{~mol})(98 \mathrm{~kJ} / \mathrm{mol})]$
$\Delta G^{\circ}=131 \mathrm{~kJ}=1.31 \times 10^{5} \mathrm{~J}\left(\Delta G^{\circ}>0 ; \underline{\text { Forward Reaction is Non-spontaneous) }}\right.$

$$
Q=\frac{P^{2}{ }_{\mathrm{HOCl}_{2}}}{P_{\mathrm{H}_{2} \mathrm{O}} P_{\mathrm{Cl}_{2} \mathrm{O}}}=\frac{(0.860)^{2}}{(0.350)(0.220)}
$$

$$
Q=9.605194805
$$

$T=25^{\circ} \mathrm{C}=298.15 \mathrm{~K}$
$\Delta G^{\circ}=$? $\quad Q=$?
$\Delta G=$?

$$
\Delta G=\Delta G^{\circ}+R T \ln (Q)
$$

$$
\Delta G=\left(1.31 \times 10^{5} \mathrm{~J}\right)+(8.314 \mathrm{~J} / \mathrm{K})(298.15 \mathrm{~K}) \ln (9.605194805)=136608.1798 \mathrm{~J}
$$

$$
\Delta G=137 \mathrm{~kJ}
$$

(It became more spontaneous towards the reactants (even more nonspontaneous towards the product side). This probably means that $Q>K$ or $K<9.605194805$)

Equilibrium Point: - the point where the system attains thermodynamic equilibrium - the lowest value of free energy available to the equilibrium system.

- this occurs when $\underline{Q}=K_{\underline{p}}$ and $\underline{\Delta G=0}$ at certain partial pressures.
- we can use equilibrium point to calculate the value of the equilibrium constant K from ΔG°

$$
\begin{aligned}
& \underline{\text { Equilibrium Point }\left(Q=K_{\underline{p}}\right.} \underline{\text { and } \Delta G=0) \text { of a Gaseous System } a A_{(q)}+b B_{(q)} \rightleftharpoons c \mathrm{C}_{(q)}+d \mathrm{D}}((q) \\
& \qquad 0=\Delta G^{\circ}+R T \ln (K) \text { or } \quad \Delta G^{\circ}=-R T \ln (K) \\
& \Delta G^{\circ}=\text { Free Energy (J) of gas at Standard Pressure of } 1 \mathrm{~atm} \quad R=\text { Gas Constant } 8.3145 \mathrm{~J} / \mathrm{K} \\
& K_{P}=\text { Equilibrium Constant of Gaseous System }=\left(\frac{P_{\mathbf{C}, e q}^{c} P_{\mathrm{D}, e q}^{d}}{P_{\mathrm{A}, e q}^{a} P_{\mathrm{B}, e q}^{b}}\right) \quad T=\text { Temperature in } \mathrm{K}
\end{aligned}
$$

Qualitative Relationship between ΔG and $K_{\underline{p}}: \quad \Delta G^{\circ}=-R T \ln \left(K_{P}\right)$

$K_{P}>1$	$\ln \left(K_{P}\right)>0$ (Positive)	$\Delta G^{\circ}<0$ (Negative)	Products are favoured over the Reactants (Forward Reaction is Spontaneous)
$K_{P}=1$	$\ln \left(K_{P}\right)=0$	$\Delta G^{\circ}=0$	Products and Reactants are Equally favoured
$K_{P}<1$	$\ln \left(K_{P}\right)<0$ (Negative)	$\Delta G^{\circ}>0$ (Positive)	Reactants are favoured over the Products (Reverse Reaction is Spontaneous)

Example 3: Calculate the equilibrium constant of the formation of water at $25.0^{\circ} \mathrm{C}$. (G° of $\mathrm{H}_{2(\mathrm{~g})}=0 \mathrm{~kJ} / \mathrm{mol}$, G° of $\mathrm{O}_{2(g)}=0 \mathrm{~kJ} / \mathrm{mol}$ and G° of $\left.\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}=-237 \mathrm{~kJ} / \mathrm{mol}\right)$

$$
\begin{aligned}
& 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \Delta G^{\circ}=\Sigma G_{\text {products }}^{\circ}-\Sigma G^{\circ}{ }_{\text {reactants }} \\
& \Delta G^{\circ}=[(2 \mathrm{~mol})(-237 \mathrm{~kJ} / \mathrm{mol})]-[(2 \mathrm{~mol})(0 \mathrm{~kJ} / \mathrm{mol})+(1 \mathrm{~mol})(0 \mathrm{~kJ} / \mathrm{mol})] \\
& \Delta G^{\circ}=-474 \mathrm{~kJ}=-4.74 \times 10^{5} \mathrm{~J} \quad\left(\Delta G^{\circ}<0 ; \text { Forward Reaction is Spontaneous }\right) \\
& \Delta G^{\circ}=-R T \ln \left(K_{P}\right) \text { at thermodynamic equilibrium } \\
& \ln \left(K_{P}\right)=-\frac{\Delta G^{\circ}}{R T}=\frac{-\left(-4.74 \times 10^{5} \mathrm{~J}\right)}{(8.3145 \mathrm{~J} / \mathrm{K})(298.15 \mathrm{~K})}=191.2085862 \\
& K_{P}=e^{191.2085862} \\
& K_{P}=1.10 \times 10^{83}
\end{aligned}
$$

Since $K_{P} \gg 1$, the equilibrium is extremely favourable towards the product at $25^{\circ} \mathrm{C}$. This is in agreement with the conclusion made using the thermodynamic quantity of $\Delta G^{\circ} \ll 0$.

Example 4: Given that $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$ has the following thermodynamic values, calculate ΔG° and K_{P} of the given equilibrium at $25.0^{\circ} \mathrm{C}$.

Chemicals	$H^{\circ}(\mathrm{kJ} / \mathrm{mol})$	$S^{\circ}[\mathrm{J} /(\mathrm{K} \bullet \mathrm{mol})]$
$\mathrm{N}_{2(\mathrm{~g})}$	0	192
$\mathrm{H}_{2(\mathrm{~g})}$	0	131
$\mathrm{NH}_{3(\mathrm{~g})}$	-46	193

$$
\begin{aligned}
& \Delta H^{\circ}=\Sigma H^{\circ}{ }_{\text {products }}-\Sigma H^{\circ}{ }_{\text {reactants }}=[(2 \mathrm{~mol})(-46 \mathrm{~kJ} / \mathrm{mol})]=\mathbf{- 9 2} \mathbf{~ k J} \\
& \Delta S^{\circ}=\Sigma S^{\circ}{ }_{\text {products }}-\Sigma S^{\circ}{ }_{\text {reactants }} \\
& \Delta S^{\circ}=[(2 \mathrm{~mol})(193 \mathrm{~J} /(\mathrm{K} \bullet \mathrm{~mol}))]-[(1 \mathrm{~mol})(192 \mathrm{~J} /(\mathrm{K} \bullet \mathrm{~mol}))+(3 \mathrm{~mol})(131 \mathrm{~J} /(\mathrm{K} \bullet \mathrm{~mol}))]=-\mathbf{1 9 9} \mathrm{J} / \mathrm{K} \\
& \Delta H^{\circ}=-92 \mathrm{~kJ}=-92000 \mathrm{~J} \\
& \mathrm{~N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})} \quad \Delta H^{\circ}=-92 \mathrm{~kJ} \\
& \Delta S^{\circ}=-199 \mathrm{~J} / \mathrm{K} \\
& T=25.0^{\circ} \mathrm{C}=298.15 \mathrm{~K} \\
& \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\
& \Delta G^{\circ}=(-92000 \mathrm{~J})-(298.15 \mathrm{~K})(-199 \mathrm{~J} / \mathrm{K})=-32668.15 \mathrm{~J} \\
& \Delta G^{\circ}=\text { ? } \\
& \Delta G^{\circ}=-3.3 \times 10^{4} \mathrm{~J} \text { at } \mathbf{2 5 . 0 ^ { \circ }} \mathrm{C} \\
& \text { Since } \Delta G^{\circ}<\mathbf{0} \text {, the Forward Reaction is Spontaneous } \\
& R=8.3145 \mathrm{~J} / \mathrm{K} \\
& \Delta G^{\circ}=-32.66815 \mathrm{~kJ}=-32668.15 \mathrm{~J} \\
& K_{P}=\text { ? } \\
& \Delta G^{\circ}=-R T \ln \left(K_{P}\right) \text { at thermodynamic equilibrium } \\
& \ln \left(K_{P}\right)=-\frac{\Delta G^{\circ}}{R T}=\frac{-(-32668.15 \mathrm{~J})}{(8.3145 \mathrm{~J} / \mathrm{K})(298.15 \mathrm{~K})} \\
& \ln \left(K_{P}\right)=13.178124 \\
& K_{P}=e^{13.178124}=528672.2741 \\
& K_{P}=5.3 \times 10
\end{aligned}
$$

As we can see $K_{P} \gg 1$, which indicates the equilibrium is favouring the product at $25^{\circ} \mathrm{C}$. This is in agreement with the conclusion made using the thermodynamic quantity of $\Delta G^{\circ}<0$.

Temperature Dependence on $K_{\underline{p}}$:

$$
\begin{aligned}
-\boldsymbol{R T} \ln \left(K_{P}\right) & =\Delta G^{\circ} & & \text { (Start with Free Energy Formula with Equilibrium Constant) } \\
-R T \ln \left(K_{P}\right) & =\Delta H^{\circ}-T \Delta S^{\circ} & & \text { (Substitute } \left.\Delta G^{\circ} \text { with } \Delta H^{\circ}-T \Delta S^{\circ}\right) \\
\ln \left(K_{P}\right) & =-\frac{\Delta \boldsymbol{H}^{\circ}}{\boldsymbol{R} \boldsymbol{T}}+\frac{\Delta \boldsymbol{S}^{\circ}}{\boldsymbol{R}} & & \text { (Divide both sides by }-R T \text { and simplify) }
\end{aligned}
$$

$\begin{aligned} \ln \left(K_{P}\right) & =-\frac{\Delta H^{\circ}}{R}\left(\frac{1}{T}\right)+\frac{\Delta S^{\circ}}{R} \\ \uparrow & \uparrow\end{aligned}$

When $\ln \left(K_{P}\right)$ is graphed against $(1 / T)$:
$\Delta H^{\circ}=-$ slope $\times R$
$\Delta S^{\circ}=(y$-intercept $) \times R$
$m<0$ when $\Delta H^{\circ}>0$ (negative slope if system is endothermic)
$m>0$ when $\Delta H^{\circ}<0$ (positive slope if system is exothermic)
$b<0$ when $\Delta S^{\circ}<0$ (negative y-int if system becomes less random)
$b>0$ when $\Delta S^{\circ}>0$ (positive y-int if system becomes more random)

Example 5: The equilibrium constant of the system, $2 \mathrm{NO}_{2(g)} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$, is allowed to varied with the change in temperature. The experimental data are shown below.

Temperature	Equilibrium Constant $\left(K_{P}\right)$
373 K	0.067
273 K	58
195 K	1.4×10^{6}
77 K	3.8×10^{29}

a. Complete the table below.
b. Graph $\ln \left(K_{P}\right)$ versus $1 / T$. Determine the slope and y-intercept of the graph using linear regression of your graphing calculator.
c. Calculate the ΔH° and ΔS° of this equilibrium system.
d. Comment on the thermodynamic spontaneity of the equilibrium system at various temperatures.

Temperature	Equilibrium Constant $\left(\mathbf{K}_{\boldsymbol{P}}\right)$	$\mathbf{1} / \mathbf{T}\left(\mathbf{K}^{-1}\right)$	$\boldsymbol{\operatorname { l n } (\boldsymbol { K } _ { \boldsymbol { P } })}$
373 K	0.067		
273 K	58		
195 K	1.4×10^{6}		
77 K	3.8×10^{29}		

a. Using the TI-83 Plus Calculator, we can enter the experimental results in the STATS Editor and quickly manipulate the data.

1. Enter Values in the L_{1} and L_{2} Columns of Stats Editor

STAT

ENTER

3. Fill in the Table

Temperature	Equilibrium Constant $\left(\boldsymbol{K}_{\boldsymbol{P}}\right)$	$\mathbf{1} / \boldsymbol{T}\left(\mathbf{K}^{\mathbf{- 1}}\right)$	$\boldsymbol{\operatorname { l n }}\left(\boldsymbol{K}_{\boldsymbol{P}}\right)$
373 K	0.067	0.00268	-2.703
273 K	58	0.00366	4.0604
195 K	1.4×10^{6}	0.00513	14.152
77 K	3.8×10^{29}	0.01299	68.110

b. Graph $\ln \left(K_{P}\right)$ versus $1 / T$. Determine the slope and y-intercept of the graph using linear regression of your graphing calculator.

1. Turn On STATS PLOT

2nd	STAT PLOT
	$\mathbf{Y}=$

2. Set WINDOW

WINDOW | $x:[0,0.014,0.002]$ |
| :--- |
| $y:[-10,80,10]$ |

WIVIIOTW
人min=0 X $\mathrm{x}=-614$
的 $1=-12$
Min=-10
Max=Bg
$\mathrm{YE}=1=10$
$\mathrm{Xr}=1$
$\ln \left(K_{P}\right)$ versus $(1 / T)$ Graph forms a Straight Line.

We can use the linear regression function of the calculator to find the value of the slope and y intercept for calculating ΔH° and ΔS° respectively.

1. Turn Diagnostic On

c. Calculate the ΔH° and ΔS° of this equilibrium system.
$-\frac{\Delta H^{\circ}}{R}=$ slope
$\Delta H^{\circ}=-($ slope $) R=-(6869.8282669823 \mathrm{~K})(8.3145 \mathrm{~J} / \mathrm{K})=-57119.18713 \mathrm{~J}$

$\frac{\Delta S^{\circ}}{R}=y$-intercept $\quad \Delta S^{\circ}=(y$-int $) R=(-21.102770455077)(8.3145 \mathrm{~J} / \mathrm{K})=-175.4589849 \mathrm{~J} / \mathrm{K}$

$$
\Delta S^{\circ}=-0.18 \mathrm{~kJ} / \mathrm{K}
$$

For the equilibrium system, $2 \mathrm{NO}_{2(g)} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$, it makes sense that $\Delta S^{\circ}<0$ because it is proceeding from two molecules of gas to one molecule of gas.
d. Comment on the thermodynamic spontaneity of the equilibrium system at various temperatures.

$$
2 \mathrm{NO}_{2(g)} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4(g)}+57 \mathrm{~kJ} \quad\left(\Delta H^{\circ}<0 \text { and } \Delta S^{\circ}<0\right) \quad \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}
$$

 $(-=(-)-$ small $(-))$. This agrees with the fact that $\underline{K}_{P} \gg 1$ at Low Temperature, which indicates that the system favors the product side. (Applying Le Châtelier's Principle will conclude that that at Low Temperature, $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] \uparrow$ and $\left[\mathrm{NO}_{2}\right] \downarrow$)

At HIGH Temperature, $\Delta G^{\circ}>0$ (Spontaneous Reverse Reaction) because $\Delta H^{\circ}<0$ and $\Delta S^{\circ}<0$ $(-=(-)-\operatorname{big}(-))$. This agrees with the fact that $\underline{K}_{\underline{P}}<1$ at High Temperature, which indicates that the system favors the reactant side. (Applying Le Châtelier's Principle will conclude that at High Temperature, $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] \downarrow$ and $\left[\mathrm{NO}_{2}\right] \uparrow$)

Assignment

18.6 pg. 811-814 \#21, 22, 24, 26 to 32, 49, 64, 66, 76, 80

