Unit 6: ACIDS-BASES AND SOLUBILITY EQUILIBRIA

Chapter 15: Acids and Bases

15.1: Brønsted Acids and Bases

Physical and Chemical Properties of Acid and Base

Acids	Bases				
Taste Sour (Citric Acids).	Taste Bitter.				
Burning Sensation (Stomach Acid).	Feels Slippery (Detergent, Degreaser).				
Corrosive with Metals (reacts to give off $H_{2(g)}$).	Alkaline in Nature (NaOH, Baking Soda).				
Red litmus remains Red; Blue litmus turns Red.	Red litmus turns Blue; Blue litmus remains Blue.				
Bromothymol Blue turns Yellow	Bromothymol Blue turns Blue.				
Phenolphthalein turns Colourless.	Phenolphthalein turns Pink.				
pH < 7	pH > 7				
pH Scale					
0 Acidic	7 Basic 14 Neutral				

Conceptual Definition: - an explanation that attempts to describe why things are the way they are.

<u>Arrhenius Concept</u>: - acids are H⁺ (proton) producers and bases are OH⁻ producers.

Examples:	$\operatorname{HCl}_{(aq)} \to \operatorname{H}^+_{(aq)} + \operatorname{Cl}^{(aq)}$	(HCl _(aq) is an Arrhenius Acid.)
	$\operatorname{NaOH}_{(aq)} \rightarrow \operatorname{Na}^{+}_{(aq)} + \operatorname{OH}^{-}_{(aq)}$	(NaOH (aq) is an Arrhenius Base.)

Brønsted-Lowry Model: - acids and bases <u>react with water</u> to **dissociate** where **acids are H⁺ (proton) donors** and **bases are H⁺ (proton) acceptors**.

- first proposed by Johannes Brønsted and Thomas Lowry.

<u>**Hydronium Ion**</u>: - an ion formed when an <u>acid "donated" H⁺ ion combined with a H₂O molecule</u> to form a <u>H₃O⁺ ion (hydronium ion)</u>.

- essentially has the same function as a H^+ ion, but H_3O^+ denotes that we are using the Brønsted-Lowry model.

Examples: HBr $_{(aq)}$ + H₂O $_{(l)} \rightarrow$ H₃O⁺ $_{(aq)}$ + Br⁻ $_{(aq)}$ (HBr is a Brønsted-Lowry Acid – donated a proton) (H₂O is a Brønsted-Lowry Base – accepted a proton.)

 $NH_{3(aq)} + H_2O_{(l)} \Rightarrow NH_{4(aq)}^+ + OH_{(aq)}^-$ (H₂O is a Brønsted-Lowry Acid – donated a proton) (NH₃ is a Brønsted-Lowry Base – accepted a proton.)

- <u>Conjugate Base</u>: the product formed <u>after</u> the Acid donated a H^+ . (Acid \rightarrow Conjugate Base) - behaves like a base when the reaction is looking from reverse.
- <u>Conjugate Acid</u>: the product formed <u>after</u> the Base accepted a H^+ . (Base \rightarrow Conjugate Acid) - behaves like a acid when the reaction is looking from reverse.

Conjugate Acid-Base Pair: - the (acid/conjugate base) or (base/conjugate acid) pairs.

Conjugate Acid-Base Pairs: **B/HB⁺** and H₂O/OH⁻

Acid Dissociation Constant (K_a): - the equilibrium constant of a Brønsted-Lowry Acid Dissociation.

Base Dissociation Constant (*K_b*): - the equilibrium constant of a Brønsted-Lowry Base Dissociation.

Brønsted-Lowry Acid Dissociation	Brønsted-Lowry Base Dissociation
$\mathbf{HA}_{(aq)} + \mathbf{H}_{2}\mathbf{O}_{(l)} \rightleftharpoons \mathbf{H}_{3}\mathbf{O}^{+}_{(aq)} + \mathbf{A}^{-}_{(aq)}$	$\mathbf{B}_{(aq)} + \mathbf{H}_2 \mathbf{O}_{(l)} \rightleftharpoons \mathbf{HB}^+_{(aq)} + \mathbf{OH}^{(aq)}$
$K_a = \frac{\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]\mathbf{A}^{-}}{\left[\mathbf{H}\mathbf{A}\right]}$	$K_b = \frac{\left[\mathbf{HB}^+\right]\mathbf{OH}^-}{\left[\mathbf{B}\right]}$

- **Example 1**: Write the Brønsted-Lowry dissociation reaction of the following. Identify the Brønsted-Lowry acid and base, along with the conjugate acid and base. Determine the conjugate acid-base pairs. State the equilibrium expression of the dissociation reaction.
- a. Acetic acid (CH₃COOH_(aq))

b. Cyanide Ion (CN⁻(aq))

 $CH_{3}COOH_{(aq)} + H_{2}O_{(l)} \rightleftharpoons H_{3}O^{+}_{(aq)} + CH_{3}COO^{-}_{(aq)}$ (Acid) (Base) (Conjugate (Conjugate Acid) Base) Conjugate Acid-Base Pairs: $CH_{3}COOH/CH_{3}COO^{-} and H_{2}O/H_{3}O^{+}$ $K_{a} = \frac{[H_{3}O^{+}]CH_{3}COO^{-}]}{[CH_{3}COOH]}$

 $CN^{-}_{(aq)} + H_2O_{(l)} \Rightarrow HCN_{(aq)} + OH^{-}_{(aq)}$ (Base) (Acid) (Conjugate (Conjugate Acid) Base) Conjugate Acid-Base Pairs: CN^/HCN and H_2O/OH^- $K_b = \frac{[HCN][OH^-]}{[CN^-]}$

15.2: The Acid-Base Properties of Water

Autoionization of Water: - the process where water dissociates into hydronium and hydroxide ions.

- water's dissociation constant is called <u>ion-product constant</u> ($K_w = 1.0 \times 10^{-14}$)
- when the solution is <u>neutral (pH = 7)</u>, $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} \text{ mol/L}$

Autoionization of Water

$$2 H_2O_{(l)} \approx H_3O^+_{(aq)} + OH^-_{(aq)}$$

$$K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}C$$

$$[H_3O^+] = \frac{K_w}{[OH^-]} \qquad [OH^-] = \frac{K_w}{[H_3O^+]}$$
At pH = 7: $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} \text{ mol/L}$

Example 1: At 25°C, $K_w = 1.0 \times 10^{-14}$.

a. Using the ICE box, show that $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7}$ mol/L for a neutral solution. b. At 100°C, $K_w = 8.19 \times 10^{-13}$. What is the $[H_3O^+]$ and $[OH^-]$ for a neutral solution at 100°C?

a.

	$2 \operatorname{H}_2 \operatorname{O}_{(l)} \rightleftharpoons \operatorname{H}_3 \operatorname{O}^+_{(aq)} + \operatorname{OH}^{(aq)}$						
	$H_2O_{(l)} \qquad [H_3O^+] \qquad [OH^-]$						
Initial			0	0			
Change			+x	+ <i>x</i>			
Equilibrium			x	x			

)	and O	I for a neutral solution at 100°C?
	l	$\mathbf{X}_{w} = [\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{O}\mathbf{H}^{-}]$
	1.0×10^{-1}	$^{14} = (x)(x)$
		$x^2 = \sqrt{1.0 \times 10^{-14}}$
		$x = 1.0 \times 10^{-7}$
6	$\mathbf{r} = \mathbf{I}$	$[1_{2}O^{+}] = [OH^{-}] = 1.0 \times 10^{-7} M$

b. At 100°C, using $K_w = 8.19 \times 10^{-13}$

$$K_w = [H_3O^+][OH^-]$$

8.19 × 10⁻¹³ = (x)(x)
$$x^2 = \sqrt{8.19 \times 10^{-13}}$$

 $x = 2.86 \times 10^{-7}$

$$x = [H_3O^+] = [OH^-] = 2.86 \times 10^{-7} M$$

Example 2: Determine the $[H_3O^+]$ and/or $[OH^-]$ concentrations of the following solutions at 25°C.

a.
$$[OH^{-}] = 1.0 \times 10^{-4} \text{ mol/L}$$

 $K_w = [H_3O^{+}][OH^{-}]$
 $[H_3O^{+}] = \frac{K_w}{[OH^{-}]} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-4}}$
 $[H_3O^{+}] = 1.0 \times 10^{-10} \text{ mol/L}$

b. $[H_3O^+] = 5.0 \times 10^{-5} \text{ M}$ $K_w = [H_3O^+][OH^-]$ $[OH^-] = \frac{K_w}{[H_3O^+]} = \frac{1.0 \times 10^{-14}}{5.0 \times 10^{-5}}$ $[OH^-] = 2.0 \times 10^{-10} \text{ M}$

<u>Assignment</u> 15.1 pg. 686–687 #1 to 8 15.2 pg. 687 #9 to 11

15.3: pH - A Measure of Acidity

<u>**pH Scale**</u>: - a logarithmic scale to <u>measure the acidity (relative $[H_3O^+]$)</u> of a solution.

- the lower the pH, the more acidic (less basic) is the solution (more [H₃O⁺] and less [OH⁻]).
- the higher the pH, the more basic (less acidic) is the solution (less [H₃O⁺] and more [OH⁻]).
- <u>acidity is NOT the same as the acid strength</u>. Just because a solution has a low pH, it does not mean that it is a strong acid. (Highly Acidic ≠ Strong Acid)
- it is normally reported between 0 to 14 (with 7 as neutral), but it can be above 14 (very basic) or below 0 (very acidic).
- an <u>increase of 1 on a pH scale</u> means a <u>decrease of $[H_3O^+]$ by a factor of 10</u>; an increase of 2 on a pH scale means a decrease of $[H_3O^+]$ by a factor of 100.

pH Scale
$$[H_{3}O^{+}] > 1.0 \times 10^{-7} \text{ mol/L} \qquad [H_{3}O^{+}] < 1.0 \times 10^{-7} \text{ mol/L} \\ [OH^{-}] < 1.0 \times 10^{-7} \text{ mol/L} \qquad [OH^{-}] > 1.0 \times 10^{-7} \text{ mol/L} \\ 0 \qquad \text{Acidic} \qquad 7 \qquad \text{Basic} \qquad 14 \\ \text{Neutral} \end{cases}$$

Example: pH of Some Common Substances

Substance	pН	Substance	pН	Substance	pН
1 M of HCl	0.00	Milk	6.30	1 M of Baking Soda (NaHCO ₃)	9.68
Stomach Acid	2.00	Rain Water	6.70	Ammonia as Household Cleaner	12.00
Lemon Juice	2.50	Pure Water	7.00	1 M of NaOH	14.00
Vinegar	3.00	Blood	7.50		

<u>pOH Scale</u>: - a logarithmic scale to **<u>measure the basicity (relative [OH-])</u>** of a solution.

- the <u>lower the pOH</u>, the more basic (less acidic) is the solution (more $[OH^-]$ and less $[H_3O^+]$).
- the higher the pOH, the less basic (more acidic) is the solution (less $[OH^-]$ and more $[H_3O^+]$).
- basicity is NOT the same as the base strength. Just because a solution has a low pOH, it does not mean that it is a strong base. (Highly Basic ≠ Strong Base)
- it is normally reported between 0 to 14 (with 7 as neutral), but it can be above 14 (very acidic) or below 0 (very basic).
- an <u>increase of 1 on a pOH scale</u> means a <u>decrease of [OH⁻] by a factor of 10</u>; an increase of 2 on a pOH scale means a decrease of [OH⁻] by a factor of 100.

pOH Scale
$$\begin{array}{c|c} [OH^{-}] > 1.0 \times 10^{-7} \text{ mol/L} & [OH^{-}] < 1.0 \times 10^{-7} \text{ mol/L} \\ [H_3O^+] < 1.0 \times 10^{-7} \text{ mol/L} & [H_3O^+] > 1.0 \times 10^{-7} \text{ mol/L} \\ \hline 0 & \text{Basic} & \text{Neutral} & \text{Acidic} & 14 \\ \hline \\ \hline pH \text{ and } pOH \text{ Scales} \\ pH = -\log [H_3O^+] & pOH = -\log [OH^-] \\ pH + pOH = 14.00 \end{array}$$

Example 1: Calculate the pH and the pOH for the following solutions.

a. 0.0100 mol/L of HI (*aq*) (completely dissociates) b. 5.00×10^{-6} M of HClO_{4 (*aq*)} (completely dissociates)

Example 2: Calculate the $[H_3O^+]$ and the $[OH^-]$ for the following solutions.

15.4: Strength of Acids and Bases

Strong Acids: - acids that dissociate completely (100%) in water.

- when the <u>acid dissociation constant (K_a) is much greater than 1.</u> $(K_a >> 1)$
- the equilibrium position strongly <u>favours the products</u>.
- at equilibrium, the original acid concentration, $[HA]_{eq} \approx 0$; $[H_3O^+]_{eq} = [A^-]_{eq} = [HA]_0$.
- the <u>conjugate base</u>, A⁻, of a strong acid, HA <u>is itself a weak base</u> (cannot easily accept protons to do the reverse reaction).
- *Note:* Strong Acids DO NOT MEAN that they are VERY CORROSIVE. It is the [H₃O⁺] that defines <u>acidity</u>.

Examples: Strong Acids: HClO_{4 (aq)}, HI (aq), HBr (aq), HCl (aq), H₂SO_{4 (aq)} and HNO_{3 (aq)}

Example 2: Write the dissociation reaction of 0.250 M of HBr_(*aq*) and determine its $[H_3O^+]$.

 $HBr_{(aq)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + Br_{(aq)}$

(Strong Acid means $[HBr]_0 = [H_3O^+]$) [HBr]_0 = 0.250 M $[H_3O^+] = 0.250 M$

Weak Acids: - acids that dissociate LESS than 100% in water.

-when the acid dissociation constant (K_a) is less than 1.

 $(K_a \leq 1)$

-the equilibrium position strongly <u>favours the reactants</u>. -at equilibrium, the hydronium concentration is much less than the original acid

concentration, $[\mathbf{HA}]_{eq} > [\mathbf{H}_3\mathbf{O}^+]_{eq}$ or $[\mathbf{HA}]_0 \approx [\mathbf{HA}]_{eq}$.

-the <u>conjugate base</u>, <u>A</u>, of a weak acid <u>is itself a stronger weak base</u> (can easily accept protons to do the reverse reaction).

Note: Weak Acids DO NOT MEAN that they are NOT CORROSIVE. It is the [H₃O⁺] that defines <u>acidity</u>. At a high enough concentration, a weak acid can be corrosive.

	$HA_{(aq)}$ + $H_2O_{(l)}$	=	$H_3O^+_{(aq)}$	+ A ⁻ _(aq)	
	(Weak Acid) (Base)		(Conjugate Acid)	(Conjugate Base-Strong	ger)
	[HA]		$[H_3O^+]$	[A ⁻]	
Initial	x		0	0	
Change	$-y$ (where $y \ll x$)		+y	+ <i>y</i>	
Equilibrium	$(x-y) \approx x$		У	y	

Examples: Some Weak Acids: HOOCCOOH_(aq), $H_2SO_{3(aq)}$, $HSO_{4^{-}(aq)}$, $H_3PO_{4(aq)}$, $HNO_{2(aq)}$, $H_3C_6H_5O_{7(aq)}$, $HF_{(aq)}$, $HCOOH_{(aq)}$, $C_6H_8O_{6(aq)}$, $C_6H_5COOH_{(aq)}$, $CH_3COOH_{(aq)}$, $H_2CO_{3(aq)}$, $H_2S_{(aq)}$, $HOC1_{(aq)}$, $HCN_{(aq)}$, $NH_{4^{+}(aq)}$, and $H_3BO_{3(aq)}$

Increasing Base Strength

Acid Name	Acid Formula	Conjugate Base Formula	Ka
perchloric acid	$HClO_{4(aa)}$	$ClO_4^{-}(aa)$	Very Large
hydroiodic acid	$\operatorname{HI}_{(aa)}$	$I^{-}(aq)$	Very Large
hydrobromic acid	$\operatorname{HBr}_{(aa)}$	$Br_{(aa)}$	Very Large
hydrochloric acid	$HCl_{(aq)}$	$\operatorname{Cl}^{(aq)}_{(aq)}$	Very Large
sulfuric acid	$H_2SO_{4(aa)}$	$HSO_{4}(aq)$	Very Large
nitric acid	$HNO_{3(aq)}$	$NO_3^{-}(aq)$	Very Large
hydronium ion	$H_3O^+_{(aq)}$	$H_2O_{(l)}$	1
oxalic acid	HOOCCOOH _(aq)	HOOCCOO ⁻ (aa)	6.5×10^{-2}
sulfurous acid	$H_2SO_{3(aq)}$	HSO ₃ ⁻	1.5×10^{-2}
hydrogen sulfate ion	$HSO_4^{-}(aq)$	SO_4^{2-}	1.2×10^{-2}
chlorous acid	$HClO_{2(aq)}$	$\text{ClO}_{2}^{-}(aq)$	1.2×10^{-2}
phosphoric acid	$H_3PO_{4(aq)}$	$H_2PO_4^{-}(aq)$	7.5×10^{-3}
arsenic acid	$H_3AsO_{4(aq)}$	$H_2AsO_4^{-}(aq)$	5×10^{-3}
monochloracetic acid	$HC_2H_2ClO_2$	$C_2H_2ClO_2^{-}(aq)$	1.35×10^{-3}
citric acid	$H_3C_6H_5O_{7(aq)}$	$H_2C_6H_5O_7^{-}(aq)$	8.4×10^{-4}
hydrofluoric acid	$\mathrm{HF}_{(aq)}$	$F^{-}_{(aa)}$	7.2×10^{-4}
nitrous acid	$HNO_{2(aq)}$	$NO_2^{-}(aa)$	4.0×10^{-4}
methanoic (formic) acid	HCOOH _(aq)	HCOO ⁻ (aq)	1.8×10^{-4}
lactic acid	$HC_{3}H_{5}O_{3(aq)}$	$C_3H_5O_3^{(a)}$	1.38×10^{-4}
ascorbic acid (vitamin C)	$H_2C_6H_6O_{6(aq)}$	$HC_6H_6O_6^{-}(aq)$	7.9×10^{-5}
benzoic acid	$C_6H_5COOH_{(aq)}$	$C_6H_5COO^{-}_{(aq)}$	6.4×10^{-5}
hydrogen oxalate ion	HOOCCOO ⁻ _(aq)	$OOCCOO^{2-}_{(aq)}$	6.1×10^{-5}
ethanoic (acetic) acid	CH ₃ COOH _(aq)	$CH_3COO^{-}_{(aq)}$	1.8×10^{-5}
dihydrogen citrate ion	$H_2C_6H_5O_7(aq)$	$HC_{6}H_{5}O_{7}^{2-}(aq)$	1.8×10^{-5}
hydrated aluminum (III) ion	$[Al(H_2O)_6]^{3+7}$	$\left[\text{AlOH}(\text{H}_2\text{O})_5\right]^{2+}$	1.4×10^{-5}
propanoic acid	C ₂ H ₅ COOH (aq)	$C_2H_5COO^{-}_{(aq)}$	1.3×10^{-5}
hydrogen citrate ion	$HC_{6}H_{5}O_{7}^{2-}(aa)$	$C_6H_5O_7^{3-}(aq)$	4.0×10^{-6}
carbonic acid	$H_2CO_{3(aq)}$	$HCO_3^{-}(aq)$	4.3×10^{-7}
hydrosulfuric acid	$H_2S_{(aq)}$	$HS^{-}_{(aa)}$	1.0×10^{-7}
hydrogen sulfite ion	$HSO_3^{-}(aa)$	SO_3^{2-} (aq)	1.0×10^{-7}
dihydrogen arsenate ion	$H_2AsO_4^{(aq)}$	$HAsO_4^{2-}(aq)$	8×10^{-8}
dihydrogen phosphate ion	$H_2PO_4^{-}(aq)$	$HPO_4^{2-}(aa)$	6.2×10^{-8}
hypochlorous acid	HOCl _(aq)	OCl ⁻ _(aa)	3.5×10^{-8}
hypobromous acid	$HOBr_{(aq)}$	$OBr^{(aq)}_{(aq)}$	2×10^{-9}
hydrocyanic acid	$HCN_{(aq)}$	$CN^{-}_{(aq)}$	6.2×10^{-10}
hydrogen arsenate ion	$HAsO_4^{2-}(aq)$	$AsO_4^{3-}(aq)$	6×10^{-10}
boric acid	$H_3BO_{3(aq)}$	$H_2BO_3^{-}(aq)$	5.8×10^{-10}
ammonium ion	$NH_{4(aq)}^{+}$	$NH_{3(aq)}$	5.6×10^{-10}
Phenol	$C_6H_5OH_{(aq)}$	$C_6H_5O^-(aq)$	1.6×10^{-10}
hydrogen carbonate ion	$HCO_{3}^{-}(aq)$	$\text{CO}_3^{2-}(aq)$	5.6×10^{-11}
hypoiodous acid	$HOI_{(aq)}$	$OI_{(aq)}^{-}$	2×10^{-11}
hydrogen ascorbate ion	$HC_6H_6O_6^{-}(aa)$	$C_6 H_6 O_6^{2-}(aq)$	1.6×10^{-12}
hydrogen phosphate ion	$\mathrm{HPO_4}^{2-}_{(aa)}$	PO_4^{3-}	4.8×10^{-13}
water (55.49 mol/L)	$H_2O_{(l)}$	OH ⁻ (<i>aq</i>)	$1.0 \times 10^{-14} = K_w$
hydrogen sulfide ion	HS ⁻ (ar)	$S^{2-}(z)$	$\sim 10^{-19}$

K _a and	Relative	Strength	of Some	Common	Acids	and	Bases	at 2	25°C
u									

Chemistry AP

Unit 6: Acids-Bases and Solubility Equilibria

Check out Strong and Weak Acids Animations at (http://www.sgc.peachnet.edu/users/larnold/WWW/courses/1212/rev1212.html)

Relative Strength of Acids and Conjugate Bases:

- 1. The stronger the acid (the bigger the value of K_a), the weaker its conjugate base.
- 2. The weaker the acid (the smaller the value of K_a), the stronger its conjugate base.

Example 2: Order the following acids from the strongest to the weakest.

HNO_{2 (aq)}, H₂SO_{3 (aq)}, HClO_{4 (aq)}, HF (aq)

According to the Acid and Bases Relative Strength Table on the previous page: $\operatorname{HClO}_{4(aq)} \gg \operatorname{H}_2\operatorname{SO}_{3(aq)} \gg \operatorname{HF}_{(aq)} \gg \operatorname{HNO}_{2(aq)}$ $(K_a: \text{ very large} >> 1.5 \times 10^{-2} > 7.2 \times 10^{-4} > 4.0 \times 10^{-4})$

Example 3: Order the following conjugate base from the strongest to the weakest. $CN^{-}_{(aa)}, SO_{4}^{2-}_{(aq)}, Cl^{-}_{(aq)}, CH_{3}COO^{-}_{(aq)}$

> According to the Acids and Bases Relative Strength Table on the previous page: $CN^{-}_{(aq)} > CH_{3}COO^{-}_{(aq)} > SO_{4}^{2-}_{(aq)} >> C\Gamma_{(aq)}$ (K_a: 6.2 × 10⁻¹⁰ < 1.8 × 10⁻⁵ < 1.2 × 10⁻² << Very Large) $HCN_{(aq)} < CH_3COOH_{(aq)} < HSO_{4(aq)} << HCl_{(aq)}$

> > b. HCOOH_(aa)

Monoprotic Acids: - acids that can donate a maximum of one proton.

Example 3: Write the dissociation reaction for the following monoprotic acids.

a. $HI_{(aq)}$

 $\operatorname{HI}_{(aq)} + \operatorname{H}_2\operatorname{O}_{(l)} \to \operatorname{H}_3\operatorname{O}^+_{(aq)} + \Gamma_{(aq)}$ Direct Arrow because HI (aa) is a Strong Acid (*K_a* is very large)

 $\text{HCOOH}_{(aq)} + \text{H}_2\text{O}_{(l)} \Rightarrow \text{H}_3\text{O}^+_{(aq)} + \text{HCOO}^-_{(aq)}$

Double Arrow because HCOOH (aq) is a Weak Acid ($K_a = 1.8 \times 10^{-4} \ll 1$)

Diprotic Acids: - acids that can donate a maximum of two protons in stepwise dissociation.

$$H_{2}A_{(aq)} + H_{2}O_{(l)} \approx H_{3}O^{+}_{(aq)} + HA^{-}_{(aq)} K_{a1} = \frac{\left[H_{3}O^{+}\right]HA^{-}_{[H_{2}A]}}{\left[H_{2}A\right]}$$
(Original Diprotic Acid) (Base) (Conjugate Acid) (Conjugate Base)
$$HA^{-}_{(aq)} + H_{2}O_{(l)} \approx H_{3}O^{+}_{(aq)} + A^{2-}_{(aq)} K_{a2} = \frac{\left[H_{3}O^{+}\right]A^{2-}_{[HA^{-}]}}{\left[HA^{-}\right]}$$
(Conjugate Base of Original Diprotic Acid)

onjugate Base of Original Diprotic Acid)

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 303.

Unit 6: Acids-Bases and Solubility Equilibria

Example 4: Write the stepwise dissociation reaction for the following diprotic acids.

a. $H_2SO_{4(aq)}$

b. HOOCCOOH (aq)

 $\mathrm{H}_{2}\mathrm{SO}_{4\,(aq)} + \mathrm{H}_{2}\mathrm{O}_{(l)} \rightarrow \mathrm{H}_{3}\mathrm{O}^{+}_{(aq)} + \mathrm{HSO}_{4^{-}(aq)}$

Direct Arrow because $H_2SO_4(aq)$ is a Strong Acid (K_{a1} is very large) $HSO_4^-(aq) + H_2O_{(l)} \Rightarrow H_3O^+(aq) + SO_4^{-2}(aq)$

Double Arrow because $HSO_4^-(aq)$ is a Weak Acid ($K_{a2} = 1.2 \times 10^{-2} \ll 1$) HOOCCOOH $_{(aq)}$ + H₂O $_{(l)}$ \Rightarrow H₃O⁺ $_{(aq)}$ + HOOCCOO⁻ $_{(aq)}$ HOOCCOO⁻ $_{(aq)}$ + H₂O $_{(l)}$ \Rightarrow H₃O⁺ $_{(aq)}$ + OOCCOO²⁻ $_{(aq)}$ Double Arrow because both HOOCCOOH $_{(aq)}$ and HOOCCOO⁻ are Weak Acids (K_{a1} and K_{a2} << 1)

<u>Amphoteric Substances</u>: - chemical <u>species that can be an acid or a base</u>. - all <u>intermediate species of a diprotic acid</u> is an amphoteric substance.

Examples: Some Amphoteric Substances: HOOCCOO⁻_(aq), HSO₄⁻_(aq), HSO₃⁻_(aq), HCO₃⁻_(aq), HS⁻_(aq), HC₆H₆O₆⁻_(aq), and H₂O_(l)

Calculating the pH of Strong Acid Solutions

Major Species: - the predominant species of an acid or a base after dissociation.

- in acid and base dissociation, because they are aqueous, water ($H_2O_{(l)}$) is always listed as a major species.

<u>Major Species of a Strong Acid</u>: - as strong acid dissociates completely $(K_a > 1)$ in water, <u>the major</u> <u>species of all strong acids are H₃O⁺ and their conjugate bases</u>.

HA _(aq)	+	$H_2O_{(l)}$	\rightarrow	$H_3O^+(aq)$	+	$A^{-}_{(aq)}$
(Strong Acid)		(Base)	(Coi	njugate Acid)	(Conjug	ate Base-Weak)

Example 5: List the major species $H_2SO_{4(aq)}$, and calculate its pH if it has a concentration of 1.00×10^{-5} M.

 $H_2SO_4_{(aq)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + HSO_4^-_{(aq)}$ Since H_2SO_4 is a strong acid, the major species are: $H_3O^+_{(aq)}$, $HSO_4^-_{(aq)}$ and $H_2O_{(l)}$ (Even if H_2SO_4 is a **diprotic acid**, it <u>dissociates one proton at a time</u>. The conjugate base, HSO_4^- , is a weak acid. Weak acids dissociate differently than strong acids – next section.) $[H_3O^+] = [H_2SO_4]_0 = 1.00 \times 10^{-5} \text{ M}$ $pH = -\log [H_3O^+]$ $pH = -\log (1.00 \times 10^{-5})$ pH = 5.00 **Example 6**: Determine the $[H_3O^+]$ and/or $[OH^-]$ concentrations of the following solutions at 25°C.

a. [HCl] = 0.350 mol/L HCl _(aq) + H₂O _(l) \rightarrow H₃O⁺ _(aq) + Cl⁻_(aq) (Strong Acid: [HCl]₀ = [H₃O⁺] = 0.350 M) $K_w = [H_3O^-][OH^-]$ [OH⁻] = $\frac{K_w}{[H_3O^+]} = \frac{1.0 \times 10^{-14}}{0.350}$ [OH⁻] = 2.86 × 10⁻¹⁴ mol/L b. [NaOH] = 0.0750 M NaOH _(aq) \rightarrow Na⁺ _(aq) + OH⁻_(aq) (Ionic Strong Base: [NaOH]₀ = [OH⁻] = 0.0750 M) $K_w = [H_3O^+][OH^-]$ [H₃O⁺] = $\frac{1.0 \times 10^{-14}}{0.0750}$ [H₃O⁺] = 1.33 × 10⁻¹³ mol/L

Oxoacids: - acids where the donating proton is attached to an oxygen atom.

- most acids are oxoacids because of the strong electronegativity of the oxygen atom, the hydrogen atom is more readily to leave as H⁺ ion.

Example: Sulfuric Acid (H₂SO_{4 (*aq*)}), successively donate protons to finally reach SO₄²⁻(*aq*)

Organic Acids: - acids of organic compounds, commonly known as carboxylic acids.

- alcohols can also be considered as organic acids, but they are really weak. This is because carboxylic acids have double-bonded oxygen for resonance to occur, whereas alcohols only contain single-bonded oxygen.

Example: Ethanoic (Acetic) Acid is compared to Phenol

<u>Assignment</u> 15.3 pg. 687 #12 to 26 15.4 pg. 687–688 #27, 28, 30 to 38; pg. 690–692 #96, 112, 126, 140

15.5: Weak Acids and Acid Ionization Constants

<u>Major Species of a Weak Acid</u>: - since weak acid do not dissociate completely ($K_a < 1$) in water, <u>the</u> <u>major species of all weak acids are their original form and water</u>.

Procedure to calculate pH of Weak Acid Solutions:

- 1. List all the major species from all weak acids, including water.
- 2. Determine which species has the highest K_a . This is the <u>Strongest Acid (SA)</u> of the list.
- 3. Write the Brønsted-Lowry dissociation of this Strongest Acid.
- 4. Set up the ICE Box and the equilibrium expression.
- 5. If the <u>original weak acid concentration, $[HA]_0$, is much larger than K_a , we can <u>approximate by</u> <u>assuming $[HA]_{eq} = ([HA]_0 x) \approx [HA]_0$ </u>. Thereby, simplifying the calculation. (A general rule of thumb: if $[HA]_0 \ge 1000 \times K_a$, we can use the approximation.)</u>
- 6. Find the concentration of H₃O⁺.
- 7. <u>Verify</u> any <u>approximation</u> made by using the <u>5% rule</u>.

$$\left(\frac{\left[\mathrm{H}_{3}\mathrm{O}^{+}\right]}{\left[\mathrm{H}\mathrm{A}\right]_{0}}\times100\%\leq5\%\right)$$

Example 1: Determine the $[H_3O^+]$, and pH of 0.200 mol/L of HF $_{(aq)}$ ($K_a = 7.2 \times 10^{-4}$).

Major Species: $HF_{(aq)}$, $H_2O_{(l)}$ Strongest Acid: $HF(K_a = 7.2 \times 10^{-4})$ (K_a for H_2O is 1.0×10^{-14}) HF is a weak acid and undergoes Brønsted-Lowry Dissociation.

<u>**Percent Dissociation**</u>: - the amount of $[H_3O^+]$ dissociated from the original $[HA]_0$ expressed in percentage.

- strong acids will have % dissociation = 100%.
- weak acids will have % Dissociation < 100%

Example 2: Determine the $[H_3O^+]$ and pH of an acid mixture of 0.500 mol/L HOBr $_{(aq)}$ ($K_a = 2 \times 10^{-9}$) of 0.200 mol/L of CH₃COOH $_{(aq)}$ ($K_a = 1.8 \times 10^{-5}$). Calculate the % dissociation of this acid mixture.

Major Species: HOBr (aq), CH₃COOH (aq), H₂O (l)Strongest Acid: CH₃COOH ($K_a = 1.8 \times 10^{-5}$)(K_a for HOBr and H₂O are 2×10^{-9} and 1.0×10^{-14})CH₃COOH is a weak acid and undergoes Brønsted-Lowry Dissociation.CAN use Approximation:

Example 3: A 0.0500 mol/L of an unknown acid, HA, has a percent dissociation of 0.38%. What is the acid dissociation constant of this acid?

Major Species: $HA_{(aq)}$, $H_2O_{(l)}$ Strongest Acid: $HA(K_a = ?)$ (K_a for H_2O is 1.0×10^{-14} and has a 0.000 01 % dissociation) HA is a weak acid and undergoes Brønsted-Lowry Dissociation.

$\operatorname{HA}_{(aq)} + \operatorname{H}_2 O_{(l)} \rightleftharpoons \operatorname{H}_3 O^+_{(aq)} + \operatorname{A}^{(aq)}$					
	[HA]		$[H_3O^+]$	[A ⁻]	
Initial	0.0500 M		0	0	
Change	-1.9×10^{-4}		$+1.9 \times 10^{-4}$	1.9×10^{-4}	
Equilibrium	0.04981 M		$1.9 \times 10^{-4} M$	$1.9 \times 10^{-4} M$	
$K_{a} = \frac{\left[\mathrm{H}_{3}\mathrm{O}^{+}\right]\!\left[\mathrm{A}^{-}\right]}{\left[\mathrm{H}\mathrm{A}\right]} = \frac{\left(1.9 \times 10^{-4}\right)\!\left(1.9 \times 10^{-4}\right)}{\left(0.04981\right)}$					

on. % Dissociation = $\frac{[H_3O^+]}{[HA]_0} \times 100\%$ $[H_3O^+] = (\%Dissociation)[HA]_0 / 100\%$ $[H_3O^+] = (0.38\%)(0.0500 \text{ M}) / 100\%$ $[H_3O^+] = 1.9 \times 10^{-4} \text{ M} = [A^-]$ $K_a = 7.2 \times 10^{-7}$

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 307.

<u>15.6 & 15.7: Weak Bases and Base Ionization Constants & The Relationship Between</u> <u>the Ionization and their Conjugate Bases</u>

Strong Bases: - bases that dissociate completely (100%) in water.

- all <u>alkali bases (Group IA cations with OH⁻</u>) and some <u>alkaline bases (Group IIA</u> <u>cations with OH⁻</u>) are considered as strong bases because they are ionic compound that dissociates completely.

Examples: Strong Ionic Bases:

a. Alkali Bases: LiOH_(aq), NaOH_(aq), KOH_(aq), RbOH_(aq), and CsOH_(aq) (gives off 1 mole of OH⁻ when 1 mole of alkali base is dissolved)

 $\operatorname{NaOH}_{(aq)} \rightarrow \operatorname{Na}^{+}_{(aq)} + \operatorname{OH}^{-}_{(aq)}$

 $\operatorname{KOH}_{(aa)} \rightarrow \operatorname{K}^{+}_{(aa)} + \operatorname{OH}^{-}_{(aa)}$

b. Alkaline Bases: Ca(OH)_{2 (aq)}, Ba(OH)_{2 (aq)}, Sr(OH)_{2 (aq)} (gives off 2 moles of OH⁻ when 1 mole of alkaline base is dissolved)

 $Ba(OH)_{2(aq)} \rightarrow Ba^{2+}_{(aq)} + 2 OH^{-}_{(aq)} \qquad Sr(OH)_{2(aq)} \rightarrow Sr^{2+}_{(aq)} + 2 OH^{-}_{(aq)}$

<u>Slaked Lime</u>: - calcium hydroxide, $Ca(OH)_{2(s)}$; commonly refer to as lime-water when it is dissolved as $Ca(OH)_{2(aq)}$

- in reality, slaked lime do not dissolve that well in water. Its dissociation constant (solubility product $-K_{sp}$) is 1.3×10^{-6} (more on K_{sp} in the next chapter). However, it is readily available and as such, it makes good bases in common laboratories.

<u>Lime-Soda Process</u>: - a process <u>where lime (CaO) and soda ash (Na₂CO₃) are added to water</u> in order to produce **chalk (CaCO₃)**.

 $\begin{array}{ccc} \textbf{CaO}_{(s)} + H_2O_{(l)} \rightarrow \textbf{Ca(OH)}_{2 (aq)} & \textbf{Na_2CO_3}_{(s)} + H_2O_{(l)} \rightarrow 2 \ \textbf{Na}^+_{(aq)} + \textbf{HCO_3}^-_{(aq)} + \textbf{OH}^-_{(aq)} \\ \textbf{(lime)} & \textbf{(lime-water)} & \textbf{(soda ash)} & \textbf{(hydrogen carbonate ion)} \\ \hline \\ \textbf{Ca(OH)}_{2 (aq)} + 2 \ \textbf{HCO_3}^-_{(aq)} + \textbf{Ca}^{2+}_{(aq)} \rightarrow 2 \ \textbf{CaCO_3}_{(s)} + 2 \ \textbf{H_2O}_{(l)} \\ \textbf{(from hard water)} & \textbf{(chalk)} \end{array}$

 Major Species of a Strong Base:
 - as alkali- and alkaline bases dissociate completely in water, the major species of all strong bases are OH⁻ and water.

 - special care must be taken with alkaline bases as they generate 2 moles of OH⁻ per 1 mole of solid dissolved.

$$\begin{array}{ccc} \text{MOH}_{(aq)} & \longrightarrow & \text{M}^{+}_{(aq)} & + & \text{OH}^{-}_{(aq)} \\ \text{(Strong Base)} & & \text{(Spectator Metal Cation)} & \text{(Major Species of Strong Base)} \end{array}$$

Example 1: List the major species NaOH_(*aq*), and calculate its pH, pOH, $[H_3O^+]$ and $[OH^-]$ if it has a concentration of 1.00×10^{-4} M.

Example 2: List the major species $Sr(OH)_{2 (aq)}$, and calculate its pH, pOH, $[H_3O^+]$ and $[OH^-]$ if it has a concentration of 1.00×10^{-4} M.

Weak Bases: - bases that dissociate LESS than 100% in water.

- when the <u>base dissociation constant (K_b) is less than 1.</u> $(K_b < 1)$
- the equilibrium position strongly favours the reactants.
- at equilibrium, the hydroxide concentration is much less than the original base concentration, [OH]_{eq} < [B]_{eq} or [B]₀ ≈ [B]_{eq}.
- the <u>conjugate acid</u>, <u>HA</u>, of a weak base <u>is itself a stronger weak acid</u> (can easily donate protons to do the reverse reaction).

	$\begin{array}{c} \mathbf{B}_{(aq)} + \mathbf{H}_2 \mathbf{O}_{(l)} \\ \text{(Weak Base)} \\ \text{(Acid)} \end{array} =$	■ OH ⁻ _(aq) (Conjugate Base)	+ HB ⁺ _(aq) (Conjugate Acid-Stronger)
	[B]	[OH ⁻]	[HB ⁺]
Initial	<i>x</i>	0	0
Change	$-y$ (where $y \ll x$)	+ y	+y
Equilibrium	$(x-y) \approx x$	у	у

٦

Examples: Some Weak Bases: HOOCCOO⁻_(aq), HSO₃⁻_(aq), HSO₄⁻_(aq), H₂PO₄⁻_(aq), NO₂⁻_(aq), HCO₃⁻_(aq), H₂C₆H₅O₇⁻_(aq), F⁻_(aq), HCOO⁻_(aq), C₆H₇O₆⁻_(aq), C₆H₅COO⁻_(aq), CO₃²⁻_(aq), CH₃COO⁻_(aq), HS⁻_(aq), OCl⁻_(aq), CN⁻_(aq), NH₃ (_{aq)}, and NO₃⁻_(aq)

Base Dissociation Constant (K_b) : - the equilibrium constant of a dissociation of a weak base in water. - K_b of a weak base can be calculated from K_a of its conjugate acid and K_w .

$$B_{(aq)} + H_2O_{(l)} = OH^-_{(aq)} + HB^+_{(aq)} \qquad K_b = \frac{OH^-_{[HB^+]}}{[B]}$$
(Weak Base) (Acid) (Conjugate Base) (Conjugate Acid)
$$HB^+_{(aq)} + H_2O_{(l)} = H_3O^+_{(aq)} + B_{(aq)} \qquad K_a = \frac{[H_3O^+][B]}{[HB^+]}$$
(Weak Acid) (Base) (Conjugate Acid) (Conjugate Base)
$$K_a \times K_b = \frac{[H_3O^+][B]}{[HB^+]} \times \frac{[OH^-][HB^+]}{[B]} = [H_3O^+][OH^-] = K_w$$

$$\boxed{\text{Relationship between Conjugate Acid-Base Pair Dissociation Constants}}_{K_w} = K_a \times K_b$$

<u>Major Species of a Weak Base</u>: - since weak acid do not dissociate completely ($K_b < 1$) in water, <u>the</u> <u>major species of all weak bases are their original form and water</u>.

Procedure to calculate pH of Weak Base Solutions:

- 1. List all the major species from all weak bases, including water.
- 2. Calculate K_b from all weak bases using $K_w = K_a \times K_b$
- 3. Determine which species has the highest K_b . This is the <u>Strongest Base (SB)</u> of the list.
- 4. Write the Brønsted-Lowry dissociation of this Strongest Base
- 5. Set up the ICE Box and the equilibrium expression.
- 6. If the <u>original weak base concentration</u>, $[B]_0$, is much larger than K_b , we can <u>approximate by</u> <u>assuming $[B]_{eq} = ([B]_0 - x) \approx [B]_0$ </u>. Thereby, simplifying the calculation. (A general rule of thumb: if $[B]_0 \ge 1000 \times K_b$, we can use the approximation.)
- 7. Find the concentration of OH⁻.
- 8. <u>Verify</u> any <u>approximation</u> made by using the <u>5% rule</u>.

$$\left(\frac{\left[OH^{-}\right]}{\left[B\right]_{0}} \times 100\% \le 5\%\right)$$

Example 3: Determine the [OH⁻], [H₃O⁺], pOH, pH and % dissociation of 0.200 mol/L of NaCN _(*aq*). $(K_a \text{ of HCN} = 6.2 \times 10^{-10}).$

NaCN dissociates completely in water: $NaCN_{(aq)} \rightarrow Na^{+}_{(aq)} + CN^{-}_{(aq)}$ (Weak Base) Major Species: $CN^{-}_{(aq)}$, $H_2O_{(l)}$ $K_b = \frac{K_w}{K} = \frac{1.00 \times 10^{-14}}{6.2 \times 10^{-10}}$ $K_b = 1.613 \times 10^{-5}$ (taking a few more decimal places to avoid round off errors) Strongest Base: CN⁻ ($K_b = 1.613 \times 10^{-5}$) (K_b for H₂O is $K_w = 1.0 \times 10^{-14}$) **CN⁻** is a weak base and undergoes Brønsted-Lowry Dissociation. **CAN use Approximation:** $\frac{\left|\text{CN}^{-}\right]_{0}}{K_{b}} = \frac{0.200 \,\text{M}}{1.613 \times 10^{-5}}$ $CN^{-}_{(aq)} + H_2O_{(l)} \Rightarrow HCN_{(aq)} + OH^{-}_{(aq)}$ $[CN^{-}]$ $[H_3O^+]$ $[OH^-]$ = 12399 ≥ 1000 Initial 0.200 M 0 0 Change +x+xUse 0.2 in the denominator, -xEquilibrium (0.2 - x)because $(0.2 - x) \approx 0.2$ [x is x x so small compared to 0.2 MJ $K_b = \frac{[\text{HCN}][\text{OH}^-]}{[\text{CN}^-]} \qquad 1.613 \times 10^{-5} = \frac{(x)(x)}{(0.2 - x)} \approx \frac{x^2}{(0.2)}$ $[OH^{-}] = 0.0018 \text{ mol/L} = 1.8 \text{ mmol/L}$ $1.613 \times 10^{-5} (0.2) \approx x^2$ $3.226 \times 10^{-6} \approx x^2$ $pOH = -\log[OH^{-}]$ $pOH = -\log(0.0018)$ $x \approx \sqrt{3.226 \times 10^{-6}}$ pOH = 2.75 $x \approx 0.0018$ % Dissociation = $\frac{\left[OH^{-}\right]}{\left[CN^{-}\right]} \times 100\%$ Verify that we could use Approximation: $\frac{\text{OH}^{-}}{\text{ICN}^{-}} \times 100\% = \frac{0.0018 \text{ M}}{0.200 \text{ M}} \times 100\%$ % Dissociation = $\frac{0.0018 \text{ M}}{0.200 \text{ M}} \times 100\%$ $= 0.90\% \le 5\%$ % Dissociation = 0.90% Therefore, approximation would be appropriate. $pH = -\log [H_3O^+]$ $[H_3O^+] = 10^{-pH} = 10^{-11.25}$ pH = 14 - pOHpH = 14 - (2.75) $[H_3O^+] = 5.6 \times 10^{-12} M$ pH = 11.25

> <u>Assignment</u> 15.5 pg. 688 #39 to 50; pg. 690–691 #98 and 124 15.6 & 15.7 pg. 688–689 #51 to 58 pg. 691 #122

15.8: Diprotic and Polyprotic Acids

<u>Polyprotic Acids</u>: - acids that can donate more than one protons.

- this includes all diprotic and <u>triprotic acids</u> (acids that can <u>donate three protons</u>).
 polyprotic acids dissociate one proton at a time. Each successive proton donation has
- its own K_a , which gets smaller until the last proton is donated. $(K_{a1} > K_{a2} > K_{a3} > ...)$.
- the intermediates (conjugate bases of each dissociation except the last one) are themselves acids. Thus, <u>diprotic acid</u> can generate <u>one amphoteric species</u>, and <u>triprotic acid</u> can generate <u>two amphoteric species</u>.
- <u>except for sulfuric acid (because K_{a1} is very large and K_{a2} is small), all polyprotic acids' $[H_3O^+]$ are calculated from their K_{a1} because successive proton donation from smaller subsequent K_a do not amount to any significant increase in the $[H_3O^+]$.</u>

Examples: Some Polyprotic Acids:

a. Diprotic Acids: H₂SO_{4 (aq)}, HOOCCOOH (aq), H₂SO_{3 (aq)}, H₂C₆H₆O_{6 (aq)}, H₂CO_{3 (aq)}, H₂S (aq)

Diprotic Amphoteric Intermediates: HSO₄⁻(*aq*), HOOCCOO⁻(*aq*), HSO₃⁻(*aq*), HC₆H₆O₆⁻(*aq*), HCO₃⁻(*aq*), HSO₃⁻(*aq*), HSO₃⁻(*aq*

b. Triprotic Acids: H₃PO_{4 (aq)}, H₃AsO_{4 (aq)}, H₃C₆H₅O_{7 (aq)}, H₃BO_{3 (aq)}

Triprotic Amphoteric Intermediates: $H_2PO_4^{-}(aq)$, $HPO_4^{2-}(aq)$, $H_2AsO_4^{-}(aq)$, $HAsO_4^{2-}(aq)$, $H_2C_6H_5O_7^{-}(aq)$, $HC_6H_5O_7^{2-}(aq)$, $H_2BO_3^{-}(aq)$, $HBO_3^{2-}(aq)$

Example 1: Determine the pH of 2.00 M of citric acid (H₃C₆H₅O_{7 (*aq*)) and the concentrations of H₃C₆H₅O_{7 (*aq*), H₂C₆H₅O_{7 (*aq*), HC₆H₅O_{7 (*aq*), and C₆H₅O_{7 (*aq*). The acid dissociation constants are $K_{a1} = 8.4 \times 10^{-4}$, $K_{a2} = 1.8 \times 10^{-5}$, and $K_{a3} = 4.0 \times 10^{-6}$.}}}}}

Major Species Strongest Acie H ₃ C ₆ H ₅ O ₇ is a	s: $H_3C_6H_5O_7(aq)$, $H_2O(t)$ d: $H_3C_6H_5O_7(aq)$ ($K_{a1} =$ a weak acid (Brønsted-)	8.4 × 10 ⁻⁴) Lowry Dissoc	ciation).	CAN use Approximation: $\frac{[H_{3}C_{6}H_{5}O_{7}]_{0}}{K_{a1}} = \frac{2.00 \text{ M}}{8.4 \times 10^{-4}}$
	$\mathbf{H}_{3}\mathbf{C}_{6}\mathbf{H}_{5}\mathbf{O}_{7(aq)} + \mathbf{H}_{2}\mathbf{O}_{(l)}$	\Rightarrow H ₃ O ⁺ _(aq) -	$+ H_2C_6H_5O_7(aq)$	$= 2381 \ge 1000$
	$[H_3C_6H_5O_7]$	$[\mathbf{H}_{3}\mathbf{O}^{T}]$	$[\mathbf{H}_{2}\mathbf{C}_{6}\mathbf{H}_{5}\mathbf{O}_{7}^{-}]$	Use 2 in the denominator,
Initial	2.00 M	0	0	because $(2 - x) \approx 2$ [x is so
Change	<i>-x</i>	+x	+ <i>x</i>	small compared to 2.00 M]
Equilibrium	(2 - x)	x	x	
$K_a = \frac{\left[\mathrm{H}_3\mathrm{O}^+\right]}{\left[\mathrm{H}_3\mathrm{C}\right]}$	$\begin{bmatrix} I_2 C_6 H_5 O_7^{-} \end{bmatrix}$	8.4×10^{-4} 8.4	$= \frac{(x)(x)}{(2-x)} \approx \frac{x^2}{2}$ $\times 10^{-4} (2) \approx x^2$	$[H_3O^+] = 0.0410 \text{ mol/L}$ $pH = -\log [H_3O^+]$ $pH = -\log(0.0410)$
Verify that we	e could use Approxima	<u>tion</u> :	$0.00168 \approx x^2$	pH = 1.39
$\frac{[H_3O^+]}{[H_3C_6H_5O_7]_0}$ Therefore, ap	$\times 100\% = \frac{0.0410 \text{ M}}{2.00 \text{ M}} \times$ = 2.05% ≤ 5% proximation would be	100% appropriate.	$x \approx \sqrt{0}$ $x \approx 0.0$ $[H_3C_6H_5O_7]_{ec}$ $[H_3C_6H_5O_7]_{ec}$	$\begin{array}{c} \textbf{(after 1st proton)} \\ \textbf{0410} \\ \textbf{(after 1st proton)} \\ (after 1st $

Page 312.

Next, we have t	to calculate [H ₂ C ₆	H_5O_7] after the	e first proton do	onation.
Major Species:	$H_2C_6H_5O_7(aq), H_1$	$(_2\mathbf{O}_{(l)})$		CAN use Approximation:
Strongest Acid:	$H_2C_6H_5O_7$ (aq) (A	$X_{a2} = 1.8 \times 10^{\circ}$	ociation)	
112C6115O7 18 a	weak actu (DI bils	steu-Lowry Diss	ociation).	$\frac{\left[\Pi_{2} \Box_{6} \Pi_{5} \Box_{7}\right]}{K} = \frac{0.0410 \text{ M}}{1.8 \times 10^{-5}}$
$H_2C_6H_5$	$\mathbf{O}_7^{-}_{(aq)} + \mathbf{H}_2\mathbf{O}_{(l)} =$	= H ₃ O ⁺ _(aq) + HC	${}^{2}_{6}\mathrm{H}_{5}\mathrm{O}_{7}^{2-}_{(aq)}$	$K_{a2} = 1.0 \times 10$
	$[\mathrm{H}_{2}\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{O}_{7}^{-}]$	$[H_3O^+]$	$[{\rm HC_6H_5O_7}^{2-}]$	Use 0.041 in the denominator and
Initial	x = 0.0410 M	0.0410 M	0	numerator, because $(0.041 - y) \approx$
Change	-y	+y	+y	$(0.041 + y) \approx 0.041$ [y is so small
r T	(0.041 - y)	(0.041 + y)	y	compared to 0.041 M]
$K_a = \frac{[\mathrm{H}_3\mathrm{O}^+]}{[\mathrm{H}\mathrm{O}^+]}$	$C_6H_5O_7^{2-}$	1.8×10^{-1}	$^{-5} = \frac{(0.041 + y)(x)}{(x-y)(x-y)}$	$(y) \approx \frac{(0.041)y}{(0.041)y}$
H ₂ C ₆ H	$H_5O_7^{-}$		(0.041 – y) (0.041)
verny that we	could use Approx	<u>imation</u> :		1.0
$\left[H_{3}O^{+} \right] $	$\times 100\% = \frac{1.8 \times 10^{-1}}{100\%}$	$\frac{5}{100\%}$ × 100%		$y \approx 1.8 \times 10$
$\left[\mathrm{H}_{2}\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{O}_{7}\right]_{0}$	0.0410	М		
Therefore, app	≥ 0.44% = roximation would	≤ 5% be appropriate	b.	
$New [H_3O^+] = 0$	0.0410 M + 1.8 × 1	0^{-5} M New	$pH = -\log [H_3]$	$O^+] = -\log(0.041018)$
New [H ₃ O ⁺] =	= 0.041018 M	New	pH = 1.39 (aft	er second proton donation)
	0.041 M 1.9 v 1	10 ⁻⁵ M		- 0.040082 M
$[\Pi_2 C_6 \Pi_5 O_7]_{eq} =$	- 0.041 M – 1.8 × 1			_q - 0.040982 M
Finally, we hav	e to calculate [HC	$C_{6}H_{5}O_{7}^{2^{-}}$ and [(C ₆ H ₅ O ₇ ⁵⁻] after	the last proton donation.
Major Species:	$HC_6H_5O_7^{2-}(aq), H$	$_{2}O_{(l)}$ Stron	gest Acid: HC ₆	$H_5 O_7^{2-}{}_{(aq)} (K_{a3} = 4.0 \times 10^{-6})$
пС ₆ п ₅ О ₇ is а	weak aciu (Droiis	steu-Lowry Diss	ociation).	CANNOT use Approximation:
HC ₆ H	$5\mathbf{O}_{7}^{2-}(aq) + \mathbf{H}_{2}\mathbf{O}_{(l)}$	\Rightarrow H ₃ O ⁺ _(aq) + C	$^{2}_{6}\text{H}_{5}\text{O}_{7}^{3-}_{(aq)}$	$\begin{bmatrix} HC H O^{2^{-}} \end{bmatrix}$ 18×10 ⁻⁵ M
x •/• x	$[\text{HC}_{6}\text{H}_{5}\text{O}_{7}^{2-}]$	$[\mathrm{H}_{3}\mathrm{O}^{+}]$	[C ₆ H ₅ O ₇ ³]	$\frac{100_{6}11_{5}0_{7}}{K} = \frac{1.8 \times 10^{-6}}{4.0 \times 10^{-6}}$
Initial Change	$y = 1.8 \times 10^{-5} \mathrm{M}$	0.041018 N		$A_{a3} = 4.5 < 1000$
Equilibrium	$\frac{-2}{(1.8 \times 10^{-5} - 7)}$	(0.041018 +	(z) z	
	$1 \circ 3^{-1}$	(0.0410		→ solve((.041018+x))X/(1,85,5+X)-45
$K_a = \frac{[H_3O^+]C_6}{[UC]U}$	$\frac{H_5O_7}{O_2^{2-1}}$ 4.0 ×	$< 10^{-6} = \frac{(0.0410)}{(1.8)(1.10)}$	$\frac{18+z(z)}{2}$), TEELEECOE
$[HC_6H_5]$	0 ₇]	(1.8×1) (0.0410	(0 - z)	1.700100690619
		$0 = \frac{(0.0410)}{(1.8 \times 1)}$	$\frac{18+z(z)}{0^{-5}-z}$ - 4.0 >	$\times 10^{-6}$ $z = 1.76 \times 10^{-9}$
$Final [H_3O^+] = 0$).041018 M + 1.76	$\times 10^{-9} \mathrm{M}$	Final pH = $- \log \frac{1}{2}$	$g[H_3O^+] = -\log(0.0410180018)$
Final [H ₃ O ⁺	[] = 0.0410180018	M	Fin (no change	hal pH = 1.39 c from the pH at K_{a1}
$[HC_6H_5O_7^{2-}]_e$	$_{q} = 1.8 \times 10^{-5} \mathrm{M} - $	$1.76 \times 10^{-9} M$		$C_6H_5O_7^{2-}]_{eq} = 1.80 \times 10^{-5} \text{ M}$ $C_6H_5O_7^{3-}]_{eq} = 1.76 \times 10^{-9} \text{ M}$
Copyrighted	by Gabriel Tar	ng B.Ed., B.Sc		Page 313.

Example 2: Determine the pH of 0.0500 M of sulfuric acid (H₂SO_{4 (*aq*)}) and the concentrations of HSO₄⁻(*aq*), and SO₄²⁻(*aq*). The acid dissociation constant is $K_{a2} = 1.2 \times 10^{-2}$.

 $H_2SO_4(aq) + H_2O_{(l)} \rightarrow H_3O^+(aq) + HSO_4^-(aq)$

Since
$$\underline{H}_2 SO_4$$
 is a strong acid, the major species are: $H_3O^+_{(aq)}$, $HSO_4^-_{(aq)}$ and $\underline{H}_2O_{(f)}$.
 $[H_3O^+] = [H_2SO_4]_0 = 0.0500 M$ $pH = -log [H_3O^+]$
 $pH = -log (0.0500)$ $pH = 1.30 (after K_{a1})$
Next, we have to calculate $[HSO_4^-]$, $[SO_4^{2^-}]$ and the final pH after the last proton donation.
Major Species: $HSO_4^-_{(aq)}$, $H_2O_{(f)}$ Strongest Acid: $HSO_4^-_{(aq)}$ ($K_{a2} = 1.2 \times 10^{-2}$)
HSO_4^- is a weak acid (Brønsted-Lowry Dissociation).
 $HSO_4^-_{(aq)} + H_2O_{(f)} = H_3O^+_{(aq)} + SO_4^{2^-}_{(aq)}$
 $HSO_4^-_{(aq)} = 0.0550 M$
 $HSO_4^{-1} = 0.00851$
 $L_2 \times 10^{-2} = (0.055 + x)(x)$
 $O_4 = (0.0585 M^+)$
 $O_4 = (0.0585 M^+)$

From the last two examples, we can see that sulfuric acid (H₂SO_{4 (aq)}) requires the calculation of $[H_3O^+]$ in both steps of the dissociation. Other polyprotic acids, such as $H_3C_6H_5O_7_{(aq)}$ only require the first dissociation step to calculate the [H₃O⁺].

> Assignment **15.8** pg. 689 #59 to 64; pg. 691 #118 and 120

Page 314.

F

15.9: Molecular Structure and the Strength of Acids

Structural Factors that affect Acid Properties

1. <u>Polarity</u>: - in general, the more polar the intramolecular bond between hydrogen and the adjacent atom, the more likely hydrogen be donated and becoming a stronger Brønsted-Lowry acid. (C–H bonds have very little polarity.)

Hydrohalic Acids (H–X): - any acids that contain a halogen atom as adjacent atom to the donating hydrogen atom.

2. Bond Strength: - the stronger the bond strength (more exothermic ΔH_f) means weaker Brønsted-Lowry acid. This is because the stronger the bond strength, the more energy it will be needed to break the bond between hydrogen and the adjacent atom. Therefore, the proton is less likely to be donated.

Example: Decreasing Polarity: H-F > H-Cl > H-Br > H-IH-F > H-Cl > H-Br > H-IWeak Acid Strong Acids Bond Strength:

Despite the high polarity, HF is a weak acid because of its high bond strength. This is also due to the fact that F is in the second orbital and its protons have a more effective "pull" on the bonding electrons. Thereby, keeping the hydrogen atom from donating as a H⁺ ion.

Oxoacids (H–O–X): - any acids that contain an oxygen atom as adjacent atom to the donating hydrogen atom. - the other side of this oxygen atom is bonded by a non-metal atom.

Examples: Some oxoacids: $HClO_{3(aa)}$, $H_2SO_{4(aa)}$, $HNO_{2(aa)}$

3. <u>Electron Density of Oxoacids</u>: - the more oxygen atoms that an oxoacid has within a series, the stronger the acid. This is due to the higher electron density for the oxoacid with higher number of oxygen (each oxygen atom can provide two lone-pairs).

Example: Decreasing Strength of oxoacid series:

:0: H:0:CI:0: H:0:CI: 0: $HClO_4$ (Strong Acid) > $HClO_3$ > $HClO_2$ > HClO H_2SO_4 (Strong Acid) > H_2SO_3 HNO₃ (Strong Acid) > HNO₂

Higher Electron Density with More Oxygen Atoms in Oxoacids makes Stronger Acids

...

4. Electronegativity: - the higher the electronegativity of the oxoacid's central atom (H–O–X) with the same number of oxygen atoms, the stronger the acid. This is because higher electronegativity atom draws bonding electrons closer itself, leaving a weaker bond between the oxygen and the hydrogen. The result is the increasing tendency for the hydrogen to donate (making it a stronger acid).

Example: Decreasing Strength of various oxoacid series with the same number of oxygen atoms:

 $HClO_3 > HBrO_3 > HIO_3$ Electronegativity (Cl = 3.0, Br = 2.8, I = 2.5)

Unit 6: Acids-Bases and Solubility Equilibria

5. <u>Resonance</u>: - if the conjugate base has a resonance structure after the donation of a proton, the stronger is the original acid.

<u>Carboxylic Acids</u> (R–COO–H): - any organic acids that contain the carboxyl group(s)

- the conjugate base has a stable resonance structure, thereby makes proton donation of the acid possible.

Examples: Some carboxylic acids: HCOOH (*aq*), CH₃COOH (*aq*), HOOCCOOH (*aq*)

- alcohols can also be considered as organic acids, but they are really weak (so weak that we don't really think of them as acids). This is because carboxylic acids have double-bonded oxygen for resonance to occur, whereas alcohols only contain single-bonded oxygen.

Example: Ethanoic (Acetic) Acid is compared to Phenol

15.10: Acid-Base Properties of Salts

<u>Salts</u>: - ionic compounds that might dissociate in water.

1. <u>Neutral Salts</u>: - when the <u>Cation comes from a Strong Base</u> and the <u>Anion is the Conjugate-Base of</u> <u>Strong Acid</u>.

- no effect on pH; if dissolve in pure water, pH will remain at 7.

Examples: Some Neutral Salts:

- a. $\text{KNO}_{3(aq)}$ (K⁺ can be from a strong base KOH_(aq); NO₃⁻ is the conjugate-base of a strong acid HNO_{3(aq)})
- b. NaCl $_{(aq)}$ (Na⁺ can be from a strong base NaOH $_{(aq)}$; Cl⁻ is the conjugate-base a strong acid HCl $_{(aq)}$)
- 2. <u>Basic Salts</u>: when the <u>Cation comes from a Strong Base</u> and the <u>Anion is the Conjugate-Base of a</u> <u>Weak Acid</u>.
 - pH will increase; if dissolve in pure water, pH > 7 (Basic).

Examples: Some Basic Salts:

- a. NaCH₃COO $_{(aq)}$ (Na⁺ can be from a strong base NaOH $_{(aq)}$; CH₃COO⁻ is the conjugate-base of a weak acid CH₃COOH $_{(aq)}$)
- b. $KF_{(aq)}(K^+ can be from a strong base KOH_{(aq)}; F^- is the conjugate base of a weak acid HF_{(aq)})$

Hydrolysis: - the reaction of a base and a water to form a conjugate acid and OH⁻.

- it is basically the Brønsted-Lowry Dissociation of a weak base.

 $\mathbf{B}_{(aq)} + \mathbf{H}_{2}\mathbf{O}_{(l)} \rightleftharpoons \mathbf{OH}_{(aq)} + \mathbf{HB}_{(aq)}^{+} \mathbf{K}_{b} = \frac{\mathbf{OH}_{\mathbf{B}}^{-}\mathbf{HB}_{\mathbf{B}}^{+}}{\mathbf{B}}$ (Weak Base) (Acid) (Conjugate Base) (Conjugate Acid)

<u>Percent Hydrolysis</u>: - the amount of [OH⁻] dissociated from the original [B]₀ expressed in percentage.

- strong bases will have % Hydrolysis = 100%.

- weak bases will have % Hydrolysis <100%

Example 1: Determine the pH and the percent hydrolysis of 0.235 M of sodium nitrite. The acid dissociation constant for nitrous acid is $K_a = 4.0 \times 10^{-4}$.

Sodium nitrite (NaNO₂) dissociates completely in H₂O: NaNO_{2 (s)} \rightarrow Na⁺_(aq) + NO₂⁻_(aq) (Weak Base) Major Species: NO₂⁻_(aq), H₂O_(l) $K_b = \frac{K_w}{K_a} = \frac{1.00 \times 10^{-14}}{4.0 \times 10^{-4}}$ $K_b = 2.5 \times 10^{-11}$ Strongest Base: NO₂⁻ ($K_b = 2.5 \times 10^{-11}$) (K_b for H₂O is $K_w = 1.0 \times 10^{-14}$)

NO₂⁻ is a weak base and undergoes Brønsted-Lowry Dissociation.

$$\frac{NO_{2}^{-}(aq) + H_{2}O_{(l)} \neq HNO_{2}(aq) + OH^{-}(aq)}{[NO_{2}^{-}]} = \frac{HNO_{2}(aq) + OH^{-}(aq)}{[OH^{-}]}$$
CAN use Approximation:

$$\frac{[NO_{2}^{-}]_{b}}{[NO_{2}^{-}]_{b}} = \frac{0.235 M}{2.5 \times 10^{-11}} = 9.4 \times 10^{9} \ge 1000$$
Change

$$\frac{-x}{+x} + \frac{+x}{+x} + \frac{+x}{x}$$
Equilibrium (0.235 - x) x x x

$$K_{b} = \frac{[HNO_{2}][OH^{-}]}{[NO_{2}^{-}]} = 2.5 \times 10^{-11} = \frac{(x)(x)}{(0.235 - x)} \approx \frac{x^{2}}{(0.235)}$$
Use 0.235 in the denominator, because
(0.235 - x) \approx 0.235 [x is so small compared to 0.235 M]
$$2.5 \times 10^{-11} (0.235) \approx x^{2}$$

$$5.875 \times 10^{-12} \approx x^{2}$$

$$x \approx \sqrt{5.875 \times 10^{-12}} \approx x^{2}$$

$$x = [OH^{-}] \approx 2.4 \times 10^{-6} M$$

$$POH = -\log [OH^{-}] \qquad pH = 14 - pOH pH = 14 - (5.62) pH = 8.38$$
% Hydrolysis = $\frac{[OH^{-}]_{NO_{2}^{-}}}{[NO_{2}^{-}]_{0}} \times 100\% = \frac{2.4 \times 10^{-6} M}{0.235 M} \times 100\%$
% Hydrolysis = 0.00102%

As the small K_b suggests, the [OH⁻] is very small compared to $[NO_2^-]_0$. Therefore, % hydrolysis is also very small as a result.

Unit 6: Acids-Bases and Solubility Equilibria

Strongest Acid: NH_4^+ ($K_a = 5.556 \times 10^{-10}$) (K_a for H₂O is $K_w = 1.0 \times 10^{-14}$) $\mathbf{NH_4}^+$ is a weak acid and undergoes Brønsted-Lowry Dissociation.

Page 318.

Example 3: Determine the pH of 44.33 g of iron (III) bromide (FeBr_{3 (*aq*)}) dissolved in 750 mL of water. The acid dissociation constant for $[Fe(H_2O)_6]^{3+}_{(aq)}$ is $K_a = 8.3 \times 10^{-3}$.

FeBr₃ dissociates completely in water and form hydrated complex ion:

FeBr_{3 (s)} + 6 H₂O (l)
$$\rightarrow$$
 Fe(H₂O)₆³⁺(aq) (Weak Acid) + 3 Br⁻(aq) $n = \frac{44.33 \text{ g}}{295.55 \text{ g/mol}}$ [FeBr₃] = [Fe(H₂O)₆³⁺] = $\frac{0.1499915412 \text{ mol}}{0.750 \text{ L}}$ $n = 0.1499915412 \text{ mol FeBr}_3$ [Fe(H₂O)₆³⁺] = 0.2000 mol/L

Major Species: $Fe(H_2O)_6^{3+}(aq)$, $H_2O_{(l)}$ Strongest Acid: $Fe(H_2O)_6^{3+}(K_a = 8.3 \times 10^{-3})$ $Fe(H_2O)_6^{3+}$ is a weak acid and undergoes Brønsted-Lowry Dissociation.

Fe(I	$H_2O_{6}^{3+}(aq) + H_2O_{(l)}$	=	$H_{3}O^{+}_{(aq)} +$	\cdot FeOH(H ₂ O) ₅ ²⁺ (aq)	CANNOT use Approximation:
	$[Fe(H_2O)_6^{3+}]$		$[H_3O^+]$	$[FeOH(H_2O)_5^{2+}]$	$[E_{2}(H_{0})^{3+}]$ 0.200 M
Initial	0.200 M		0	0	$\frac{[\Gamma e(\Pi_2 O)]_0}{2} = \frac{0.200 \text{ M}}{2}$
Change	<i>-x</i>		+x	+ <i>x</i>	$K_a = 8.3 \times 10^{-5}$
Equilibrium	(0.2 - x)		x	x	= 24.1 < 1000
$K_a = \frac{\left[H\right]}{\left[H\right]}$	I_3O^+ FeOH(H ₂ O) ₅ ²	+]	0 = -	$\frac{x^2}{-8.3 \times 10^{-3}}$	solve(X2/(.2-X)- 8.3e-3,X,0,(0,.2
	$[Fe(H_2O)_6^{3+}]$		(0	(-2-x)	.036803907
$8.3 \times 10^{-3} = \frac{0}{0}$	$\frac{x(x)(x)}{(0.2-x)} = \frac{x^2}{(0.2-x)}$		<i>x</i> = []	$H_3O^+] = 0.037 M$	$pH = -\log [H_3O^+] = -\log (0.037)$
(, ()				$p_{\rm H} = 1.43$

Salts that Contain both Conjugate-Acid and Conjugate-Base:

- 1. If the <u>conjugate-acid ion has a greater K_a than the K_b of the conjugate-base ion</u>, then the solution will be <u>acidic</u> (pH < 7 when K_a of Conj-Acid > K_b of Conj-Base).
- 2. If the <u>conjugate-base ion has a greater K_b than the K_a of the conjugate-acid ion</u>, then the solution will be <u>basic</u> (pH > 7 when K_b of Conj-Base > K_a of Conj-Acid).
- **3.** When <u>both K_a from the conjugate-acid ion is equal to the K_b of the conjugate-base ion</u>, then the solution will be <u>neutral</u> (pH = 7 when K_a of Conj-Acid = K_b of Conj-Base).

Example 4: Classify the following salts as acid, base or neutral.

a. AIPO₄
(AI(H₂O)₆³⁺
$$K_a = 1.4 \times 10^{-5}$$
; HPO₄²⁻ $K_a = 4.8 \times 10^{-13}$)
AI³⁺_(aq) $\xrightarrow{6H_{2O}}$ AI(H₂O)₆³⁺_(aq)
AI(H₂O)₆³⁺_(aq) + H₂O_(l) \equiv H⁺_(aq) + AIOH(H₂O)₅²⁺_(aq)
PO₄³⁻_(aq) + H₂O_(l) \equiv HPO₄²⁻_(aq) + OH⁻_(aq)
For AI(H₂O)₆³⁺: $K_a = 1.4 \times 10^{-5}$
For PO₄³⁻: $K_b = \frac{K_w}{K_a} = \frac{1.0 \times 10^{-14}}{4.8 \times 10^{-13}} = 0.021$
Since K_b of PO₄³⁻ > K_a of AI(H₂O)₆³⁺,
aluminum phosphate is a Basic Salt.

AI(H₂O)₆³⁺ $K_a = 1.4 \times 10^{-5}$
For PO₄³⁻: $K_b = \frac{K_w}{K_a} = \frac{1.0 \times 10^{-14}}{4.8 \times 10^{-13}} = 0.021$
Since K_b of PO₄³⁻ > K_a of AI(H₂O)₆³⁺,
aluminum phosphate is a Basic Salt.

<u>Assignment</u> 15.9 pg. 689 #67 to 70; pg. 691 #130 15.10 pg. 689 #75 to 82; pg. 691 #106 and 128

Copyrighted by Gabriel Tang B.Ed., B.Sc.

<u>Page 319.</u>

Covalent

15.11: Acid-Base Properties of Oxides and Hydroxides

- <u>Acidic Oxides</u>: molecular oxides (XO_n) where <u>X is a non-metal atom</u> have a tendency to form acids when dissolved in water.
 - this is due to the fact that the <u>non-metal atoms have a high electronegativity</u>. Thereby, they draw the electrons of the adjacent oxygen closer themselves. Hence, the <u>O-H bond</u> within X-O-H <u>becomes so weak</u> that <u>hydrogen ion (H⁺) can be easily donated</u>.
- **Example**: The problem of acid rain is created when various molecular oxides from the exhaust of vehicles and fossil-fuel power generator (coal or natural gas) react with water in the atmosphere.

<u>Basic Oxides</u>: - ionic oxides $(M_m O_n)$ where <u>M is a metal atom</u> have a tendency to form bases when dissolved in water.

- this is due to the fact that the metal atoms have small electronegativity. Thereby, the electrons of the adjacent oxygen . Hence, the <u>O-H bond</u> within M-O-H <u>becomes so</u> <u>strong</u> that <u>hydroxide ion (OH⁻) can be easily produced</u> (Arrhenius Base).

Example: Some Metal Oxides that can form a base when dissolve in water.

Oxygen atom) – producing OH⁻ ion as a result.

Amphoteric Hydroxides: - metal hydroxide	es (non-alkali metals and non-alkaline metals – except
Be(OH) ₂) that of	can behave as acids or bases under different environments.
- some amphoter	ric hydroxides are Be(OH) ₂ , Al(OH) ₃ , Sn(OH) ₂ , Pb(OH) ₂ ,
Cr(OH) ₂ , Cu(O	$(OH)_2$, $Zn(OH)_2$, and $Cd(OH)_2$.
Example : Al(OH) ₃ in acid solutions:	$\mathrm{Al}(\mathrm{OH})_{3(s)} + 3 \mathrm{H}^{+}_{(aq)} \rightarrow \mathrm{Al}^{3+}_{(aq)} + 3 \mathrm{H}_{2}\mathrm{O}_{(l)}$
$Al(OH)_3$ in basic solutions:	$Al(OH)_{3(s)} + OH_{(aq)} \rightleftharpoons Al(OH)_{4(aq)}$

15.12: The Lewis Acids and Bases

Lewis Acid-Base Model: - using electron pair instead of proton, we can define acids that do not have a proton and bases that do not have a hydroxide ion.

- especially suitable to explain metal hydrated cation as acid, or how metal oxides can turn into a base.

Lewis Acid: - a substance that ACCEPTS an Electron Pair (Lone-Pair).

Lewis Base: - a substance that DONATES an Electron Pair (Lone-Pair).

Example 1: Draw the Lewis diagrams for the reactants and products. Identify the Lewis acids and bases. a. $Fe^{3+}_{(aq)} + 6 CN^{-}_{(aq)} \rightarrow Fe(CN)_{6}^{3-}_{(aq)}$

b. $\operatorname{Ni}_{(aq)}^{3+} + 6 \operatorname{NH}_{3(aq)} \rightarrow \operatorname{Ni}(\operatorname{NH}_{3})_{6}^{3+}(aq)$

c. $\operatorname{SO}_{2(g)} + \operatorname{H}_2\operatorname{O}_{(l)} \rightarrow \operatorname{H}_2\operatorname{SO}_{3(aq)}$

d. $\text{Co}^{3+}_{(aq)} + 6 \text{ H}_2\text{O}_{(l)} \rightarrow \text{Co}(\text{H}_2\text{O})_6^{3+}_{(aq)}$

e. $BH_{3(g)} + NH_{3(aq)} \rightarrow BH_{3}NH_{3(aq)}$

Assignment
15.11 pg. 690 #83 to 88
15.12 pg. 690 #89 to 94; pg. 692 #140

Chapter 16: Acid-Base Equilibria and Solubility Equilibria

16.1: Homogeneous Versus Heterogeneous Solution Equilibria

In acids and bases chemistry as well as solubility of ionic products, the equilibria involve are usually heterogeneous (where the phases of chemical species in the equilibrium are not in the same phases). Hence, great care is required when handling problems of these equilibria.

16.2 & 16.3: The Common Ion Effect & Buffer Solutions

<u>Common Ion</u>: - the ion that is present in two separate solutions as they are added together.

<u>Common Ion Effect</u>: - the shifting of the equilibrium, as outlined by Le Châtelier's principle, due to the addition or presence of a common ion in system.

Example 1: Identify the common ion in the following solutions.

a. 0.0250 M of carbonic acid with 0.0300 M of sodium hydrogen carbonate.

b. 0.500 M of methylamine with 0.450 M of CH₃NH₃Cl

pH Calculation Involving Common Ion:

- 1. Determine the **Initial Concentration of ALL Major Species** in the equilibrium.
- 2. Set up the <u>ICE Box and the Equilibrium Expression Equating it to the Equilibrium Constant</u>.
- 3. Calculate the [H₃O⁺] or [OH⁻] and the pH.

Unit 6: Acids-Bases and Solubility Equilibrium

Example 2: Calculate the pH of the solution that consists of 0.0250 M of carbonic acid ($K_{a1} = 4.3 \times 10^{-7}$ and $K_{a2} = 5.6 \times 10^{-11}$) with 0.0300 M of sodium hydrogen carbonate.

Buffered Solution: - a solution that <u>resists a change in pH</u> when a small amount of H₃O⁺ or OH⁻ is added. - consists of a pair of <u>weak acid/conjugate base common ion</u> or a pair of <u>weak</u> <u>base/conjugate acid common ion</u>.

Acidic Buffered Solution:

a. Small Amounts of H₃O⁺ is Added:

 $\mathrm{HA}_{(aq)} + \mathrm{H}_{2}\mathrm{O}_{(l)} \rightleftharpoons \mathrm{H}_{3}\mathrm{O}^{+}_{(aq)} + \mathrm{A}^{-}_{(aq)}$

Added: $A^{-}_{(aq)} + H_3O^{+}_{(aq)} \rightarrow H_2O_{(l)} + HA_{(aq)}$ (H⁺ - Strong Acid reacts <u>completely</u> with A⁻) (<u>More HA</u> – Weak Acid: <u>pH will only be lowered SLIGHTLY</u>!)

b. Small Amounts of OH ⁻ is Added:	$\operatorname{HA}_{(aq)} + \operatorname{OH}_{(aq)} \rightarrow \operatorname{H}_2\operatorname{O}_{(l)} + \operatorname{A}_{(aq)}$
	(OH ⁻ - Strong Base reacts <u>completely</u> with HA)
(<u>More</u>	<u>e A⁻</u> – Weak Base: <u>pH will only be raised SLIGHTLY</u> !)
Basic Buffered Solution:	$\mathbf{B}_{(aq)} + \mathbf{H}_2 \mathbf{O}_{(l)} \rightleftharpoons \mathbf{OH}^{(aq)} + \mathbf{HB}^+_{(aq)}$
a. Small Amounts of H ₃ O ⁺ is Added:	$ \begin{array}{l} \mathbf{B}_{(aq)} + \mathbf{H}_{3}\mathbf{O}^{+}_{(aq)} \rightarrow \mathbf{H}_{2}\mathbf{O}_{(l)} + \mathbf{HB}^{+}_{(aq)} \\ (\mathbf{H}^{+} - \mathbf{Strong Acid reacts } \underline{\mathbf{completely with B}}) \end{array} $
(<u>More</u>	<u>HB⁺</u> – Weak Acid: <u>pH will only be lowered SLIGHTLY</u> !)
b. Small Amounts of OH ⁻ is Added:	$\mathbf{B}_{(aq)} + \mathbf{H}_2 \mathbf{O}_{(l)} \rightleftharpoons \mathbf{OH}_{(aq)}^- + \mathbf{HB}_{(aq)}^+$
(OH	- Strong Base increases [OH]: eq shifts left)

(<u>More B</u> – Weak Base: <u>pH will only be raised SLIGHTLY</u>!)

pH Calculations Involving Buffered Solutions and any Subsequent Addition of H⁺ or OH⁻ Amounts:

- 1. Determine the <u>initial concentration of all major species</u> in the equilibrium.
- 2. Set up the <u>ICE Box and the Equilibrium Expression Equating it to the Equilibrium Constant</u>.
- 3. Calculate the $[H_3O^+]$ or $[OH^-]$ and the pH of the <u>original</u> buffered solution.
- 4. Write out the Complete Reaction for the ADDITION of H⁺ or OH⁻ into the system. Because we are adding a strong acid or a strong base, we will <u>Treat the Reaction as One-Way</u>. Hence, we can <u>Apply Regular Stoichiometric Principle</u> to calculate the moles of each major species.
- 5. Again, set up the <u>ICE Box and the Equilibrium Expression Equating it to the Equilibrium</u> <u>Constant</u>.
- 6. Calculate the $[H_3O^+]$ or $[OH^-]$ and the pH of the <u>revised</u> buffered solution.

Example 3: Calculate the pH of a 1.00 L buffered solution consisting of 0.500 M of methylamine ($K_b = 4.38 \times 10^{-4}$) with 0.450 M of CH₃NH₃Cl when:

- a. 0.0200 mol of KOH is added to it.
- b. $3.00 \text{ mL of } 0.750 \text{ M of HNO}_{3(aq)}$ is added to it.
- c. Contrast the pH's of the above two additions against the same additions to 1.00 L of water.

First, we have to figure out the [OH⁻] and pH for the buffered solution system.

Methylamine (Base) Dissociation: $CH_3NH_2(aq) + H_2O(l) \Rightarrow CH_3NH_3^+(aq) + OH^-(aq)$ $CH_3NH_3Cl:$ $CH_3NH_3Cl_{(aq)} \rightarrow CH_3NH_3^+(aq) + Cl^-(aq)$ 0.450 M0.450 M

$$\frac{\text{CH}_{3}\text{NH}_{2(aq)} + \text{H}_{2}\text{O}_{(0)} \neq \text{CH}_{3}\text{NH}_{3}^{+}(aq) + \text{OH}^{-}(aq)}{|\text{CH}_{3}\text{NH}_{2}|} + \frac{|\text{CH}_{3}\text{NH}_{3}^{+}|}{|\text{CH}_{3}\text{NH}_{3}^{+}|} + \frac{|\text{OH}^{-}|}{|\text{OH}^{-}|} \\ \frac{|\text{Initial} & 0.500 \text{ M} & 0.450 \text{ M} & 0}{|\text{Change} & -x & +x & +x \\ \hline \text{Equilibrium} & (0.5 - x) & (0.45 + x) & x \\ \hline \text{Equilibrium} & (0.5 - x) & (0.45 + x) & x \\ \hline \text{K}_{b} = \frac{|\text{OH}^{-}|\text{CH}_{3}\text{NH}_{3}^{+}|}{|\text{CH}_{3}\text{NH}_{2}|} + 3.8 \times 10^{-4} = \frac{(x)(0.45 + x)}{(0.5 - x)} \approx \frac{x(0.45)}{(0.5 - x)} \\ 4.38 \times 10^{-4} = \frac{(0.5)}{(0.45)} \approx x \\ x \approx 4.87 \times 10^{-4} \\ \hline \text{Verify that we could use Approximation:} \\ \hline \frac{|\text{OH}^{-}|}{|\text{CH}_{3}\text{NH}_{2}|_{0}} \times 100\% = \frac{4.87 \times 10^{-4} \text{ M}}{0.500 \text{ M}} \times 100\% \\ = 0.0973\% \leq 5\% \\ \hline \text{Therefore, approximation would be appropriate} \\ \hline \text{OH}^{-} = 3.1 \\ \hline \text{OH}^{-} = 10.00\% \\ \hline \text{OH}^{-}$$

Unit 6: Acids-Bases and Solubility Equilibrium

a. 0.0200 1	nol of KOH is added to	the buffered solution (Co	omplete Rxn between OH ⁻ & CH ₃ NH ₃ ⁺).
	OH ⁻ (<i>aq</i>)	+ $\operatorname{CH_3NH_3^+}_{(aq)}$.	$\rightarrow \mathrm{H}_{2}\mathrm{O}_{(l)} + \mathrm{CH}_{3}\mathrm{NH}_{2(aq)}$
	<i>n</i> of OH ⁻	<i>n</i> of $CH_3NH_3^+$	<i>n</i> of CH ₃ NH ₂
Before	0.0200 mol (Limiting) 0.450 mol	0.500 mol
Change	– 0.0200 mol	– 0.0200 mol	+ 0.0200 mol
After	0	0.430 mol	0.520 mol
Recalcu	late equilibrium concent	trations using NEW [CH	$[_2NH_3^+]_0$ and $[CH_2NH_2]_0$
CH ₃	${}_{3}\mathrm{NH}_{2(aq)} + \mathrm{H}_{2}\mathrm{O}_{(l)} \rightleftharpoons \mathrm{CH}_{2(aq)}$	$\mathrm{H_3NH_3}^+_{(aq)} + \mathrm{OH}^{(aq)}$	CAN use Approximation:
	$[CH_3NH_2] [0]$	$\mathbf{CH_3NH_3^{T}} \mathbf{[OH^{T}]}$	$[CH_{3}NH_{3}]_{0} = 0.520 M$
Initial	0.520 M	0.430 M 0	$\frac{1}{K_{\odot}} = \frac{1187 \ge 1000}{438 \times 10^{-4}} = 1187 \ge 1000$
Change	y	+y $+y$	Use 0.43 in the numerator because (0.43)
Equilibriu	$\lim_{x \to 0} (0.52 - y) (0.52 - y) $	(0.43 + y) y	(0.43) + y) ≈ 0.43 [y is so small compared to
K,	$= \underbrace{OH^{-}CH_{3}NH_{3}^{+}}_{4}$	$38 \times 10^{-4} \approx \frac{y(0.43)}{10^{-4}}$	0.43 Ml.
110	$[CH_3NH_2]$	(0.52)	-Use 0.52 in the denominator, because
4 28 10-4	(y)(0.43+y)	$20 \times 10^{-4} (0.52)$	$(0.52 - y) \approx 0.52$ [y is so small compared
4.38 × 10	$=\frac{(0.52-y)}{(0.52-y)}$ 4.	$(.38 \times 10 \frac{1}{(0.43)} \approx y$	to 0.52 M].
	y	$\approx 5.30 \times 10^{-4}$	
Verify that	we could use Approxi	mation:	$= 5.30 \times 10^{-4} \text{ mol/L}$
[он-]	5.30×10^{-4} N	vi po	$OH = -\log [OH^{-}] \qquad pH = 14 - 3.28$
[CH.NH.]	$- \times 100\% = 0.00000000000000000000000000000000000$	$= \times 100\%$ pC	$DH = -\log(5.30 \times 10^{-4})$ pri - 11 - 5.20
$[C_{11_3}] (11_2]_0$	5.520 W		pH = 3.28 $pH = 10.72$
= 0.102%	$\leq 5\%$ (Appropriate A)	pproximation)	
b. 3.00 mL	. of 0.750 M (0.00225 m	nol) of HNO _{3 (aq) is added}	to the buffered solution
(Compl	ete Reaction between I	H_3O^{\dagger} & CH ₃ NH ₂).	
	$H_3O'(aq)$	+ $CH_3NH_{2(aq)} \rightarrow$	$H_2O_{(l)} + CH_3NH_3'_{(aq)}$
	$n \text{ of } H_3O^+$	<i>n</i> of CH ₃ NH ₂	<i>n</i> of $CH_3NH_3^+$
Before	0.00225 mol (Limitin	g) 0.500 mol	0.450 mol
Change	<u>– 0.00225 mol</u>	<u>– 0.00225 mol</u>	+ 0.00225 mol
After	0	0.49775 mol	0.45225 mol
Recalculate	equilibrium concentrati	ons using NEW [CH ₃ NF	\mathbf{I}_{2} and $[CH_{3}NH_{3}]_{0}$ (neglect $\Delta volume$)
Cl	$H_3 NH_{2(aq)} + H_2 O_{(l)} \rightleftharpoons O_{(l)}$	$\operatorname{CH_3NH_3^+}_{(aq)} + \operatorname{OH}_{(aq)}^-$	CAN use Approximation:
T	$[CH_3NH_2]$	[CH ₃ NH ₃ ⁺] [OH ⁻]	$[CH_3NH_2]_0$ 0.520 M 1107 > 1000
Initial	0.49775 M	0.45225 M 0	$\frac{1}{K_{\rm h}} = \frac{118721000}{4.38 \times 10^{-4}} = 118721000$
Change Equilibrium	-z	$+\chi$ $+\chi$	Use 0.45225 in the numerator, because
Equinoriui	$\frac{11}{1} \frac{(0.49775 - z)}{1} \frac{1}{1}$	(1.45225 ± 2) Z	$(0.45225 + z) \approx 0.45225$ [z is so small
$K_{h} =$	$[OH^-][CH_3NH_3^+]$ 4.38	$3 \times 10^{-4} \approx \frac{z(0.45225)}{z(0.45225)}$	compared to 0.45225 M].
	CH ₃ NH ₂	(0.49775)◀	-Use 0.49775 in the denominator, because
4.38×10^{-4}	$= \frac{(z)(0.45225+z)}{1.3}$	$8 \times 10^{-4} \frac{(0.49775)}{2} \sim 7$	$(0.49775 - z) \approx 0.49775$ [z is so small
4.38×10^{-4}	$=\frac{(z)(0.45225+z)}{(0.49775-z)}$ 4.3	$8 \times 10^{-4} \ \frac{(0.49775)}{(0.45225)} \approx z$	(0.49775 – z) ≈ 0.49775 [z is so small compared to 0.49775 M].
4.38×10^{-4}	$=\frac{(z)(0.45225+z)}{(0.49775-z)} 4.3$	$8 \times 10^{-4} \frac{(0.49775)}{(0.45225)} \approx z$ $z \approx 4.8$	(0.49775 – z) ≈ 0.49775 [z is so small compared to 0.49775 M]. 32 × 10 ⁻⁴

Page 326.

Unit 6: Acids-Bases and Solubility Equilibrium

Example 4: Calculate the pH of a 1.00 L buffered solution consisting of 0.650 M of nitrous acid ($K_a = 4.0 \times 10^{-4}$) with 0.580 M of sodium nitrite solution. What is the new pH after 0.125 mol of Ba(OH)₂ is added to it?

Nitrous Acid Dissociation: Sodium Nitrite:

$$HNO_{2(aq)} + H_{2}O_{(l)} \rightleftharpoons H_{3}O^{+}_{(aq)} + NO_{2}^{-}_{(aq)} \qquad K_{a} = 4.0 \times 10^{-4}$$

NaNO_{2(aq)} $\rightarrow Na^{+} + NO_{2}^{-}_{(aq)}$
0.580 M 0.580 M

For the buffered solution we can use the Henderson-Hasselbalch Equation. $pH = pK_a + \log \left(\frac{\left[NO_2^{-1}\right]}{\left[HNO_2\right]} \right)$

 $pH = -\log K_a + \log \left(\frac{\left[NO_2^{-} \right]}{\left[HNO_2 \right]} \right) = -\log(4.0 \times 10^{-4}) + \log \left(\frac{0.580 \text{ M}}{0.650 \text{ M}} \right)$

CAN use Approximation:

$$\frac{[\text{HNO}_2]_0}{K_a} = \frac{0.650 \text{ M}}{4.0 \times 10^{-4}}$$
$$= 1625 \ge 1000$$

Calculate new pH after 0.125 mol of $Ba(OH)_2$ is added to the Buffered Solution. (Complete Reaction between OH⁻ & HNO₂).

Barium H	ydroxide:	Ba(OH) _{2 (aq)} - 0.125 mol	→ ¹	Ba ²⁺ + 2 OH ⁻ _(aq) 0.250 mol		
	$OH^{-}_{(aq)}$	HNO _{2 (aq)}	\rightarrow	$H_2O_{(l)} + NO_2^{-}(a)$	(q)	NI
	n of OH [−]	<i>n</i> of HNO ₂		$n \text{ of } NO_2^-$		-
Before	0.250 mol (Limiting)	0.650 mol		0.580 mol	[H]	$NO_2]_0 = 0.400 M$
Change	– 0.250 mol	– 0.250 mol		+ 0.250 mol		$K_a = \frac{1}{4.0 \times 10^{-4}}$
After	0	0.400 mol		0.830 mol		$= 1000 \ge 1000$
[H]	$\mathrm{NO}_2]_{eq} \approx [\mathrm{HNO}_2]_0 = \frac{0.4}{1}.$	$\frac{00 \text{ mol}}{00 \text{ L}} = 0.400 \text{ N}$	1	$[\mathrm{NO}_2^-]_{eq} \approx [\mathrm{NO}_2^-]_{eq} \approx [\mathrm{NO}_2^-]$	$NO_2^{-}]_0 =$	$\frac{0.830 \text{ mol}}{1.00 \text{ L}} = 0.830 \text{ M}$

Buffered Solution pH = 3.35

For the buffered solution with $Ba(OH)_2$ added, we can again use the Henderson-Hasselbalch Equation.

$$pH = pK_a + \log\left(\frac{[NO_2^{-1}]}{[HNO_2]}\right) = -\log K_a + \log\left(\frac{[NO_2^{-1}]}{[HNO_2]}\right)$$
$$pH = -\log(4.0 \times 10^{-4}) + \log\left(\frac{0.830 \text{ M}}{0.400 \text{ M}}\right)$$
$$pH (Buffered Solution with Ba(OH)_2 added) = 3.71$$

Example 5: Calculate the pH of a 1.00 L buffered solution consisting of 0.0750 M of hydrazine, H₂NNH₂ $_{(aq)}$, $(K_b = 3.0 \times 10^{-6})$ with 0.0825 M of H₂NNH₃Br solution. What is the new pH after 15.0 mL of 1.00 mol/L HBr is added to it (neglect any volume changes)?

Hydrazine Dissociation: H₂NNH₃Br:

We need to write the acid dissociation reaction and obtain K_a .

$$\mathbf{H}_{2}\mathbf{NNH}_{3}^{+}{}_{(aq)} + \mathbf{H}_{2}\mathbf{O}_{(l)} \rightleftharpoons \mathbf{H}_{3}\mathbf{O}_{(aq)}^{+} + \mathbf{H}_{2}\mathbf{NNH}_{2}{}_{(aq)} \qquad K_{a} = \frac{K_{w}}{K_{b}} = \frac{1.0 \times 10^{-14}}{3.0 \times 10^{-6}} \qquad K_{a} = 3.333 \times 10^{-9}$$

For the buffered solution, we can use the Henderson-Hasselbalch Equation.

$$pH = pK_a + \log \left(\frac{[H_2NNH_2]}{[H_2NNH_3^+]} \right) = -\log K_a + \log \left(\frac{[H_2NNH_2]}{[H_2NNH_3^+]} \right)$$

$$pH = -\log(3.333 \times 10^{-9}) + \log \left(\frac{0.0750 \text{ M}}{0.0825 \text{ M}} \right)$$

$$Buffered Solution pH = 8.44$$
CAN use Approximation:
$$\frac{[H_2NNH_3^+]_0}{K_a} = \frac{0.0825 \text{ M}}{3.333 \times 10^{-9}}$$

$$= 2.48 \times 10^7 \ge 1000$$

Calculate new pH after 15.0 mL of 1.00 mol/L (0.0150 mol) HBr is added to the Buffered Solution. (Complete Reaction between H_3O^+ & H_2NNH_2).

$$[H_2NNH_3^+]_{eq} \approx [H_2NNH_3^+]_0 = \frac{0.0975 \text{ mol}}{1.00 \text{ L}} = 0.0975 \text{ M}$$
$$[H_2NNH_2]_{eq} \approx [H_2NNH_2]_0 = \frac{0.0600 \text{ mol}}{1.00 \text{ L}} = 0.0600 \text{ M}$$

For the buffered solution with HBr added, we can again use the Henderson-Hasselbalch Equation.

$$pH = pK_a + \log \left(\frac{\left[H_2 NNH_2\right]}{\left[H_2 NNH_3^+\right]} \right) = -\log K_a + \log \left(\frac{\left[H_2 NNH_2\right]}{\left[H_2 NNH_3^+\right]} \right)$$
$$pH = -\log(3.333 \times 10^{-9}) + \log \left(\frac{0.0600 \text{ M}}{0.097500 \text{ M}} \right)$$
$$pH (Buffered Solution with HBr added) = 8.27$$

Example 6: Devise a procedure to make a buffered solution using carbonic acid ($K_{a1} = 4.3 \times 10^{-7}$ and $K_{a2} = 5.6 \times 10^{-11}$) and sodium hydrogen carbonate that is in the range of pH = 7.50.

Carbonic Acid Dissociation: $H_{2}CO_{3}(aq) + H_{2}O_{1}(aq) + H_{2}O_{3}(aq) - H_{2}O_{3}(aq) = H_{3}O^{+}(aq) + H_{2}O_{3}(aq) = K_{a} = 4.3 \times 10^{-7}$ Sodium Hydrogen Carbonate: NaHCO₃(aq) \rightarrow Na⁺ + HCO₃⁻(aq) $K_{a} = 4.3 \times 10^{-7}$ For the buffered solution, we can use the Henderson-Hasselbalch Equation to find $\left(\begin{bmatrix} HCO_{3}^{-} \\ H_{2}CO_{3} \end{bmatrix} \right)$ $pH = pK_{a} + \log \left(\begin{bmatrix} HCO_{3}^{-} \\ H_{2}CO_{3} \end{bmatrix} \right)$ $pH - pK_{a} = \log \left(\begin{bmatrix} HCO_{3}^{-} \\ H_{2}CO_{3} \end{bmatrix} \right)$ $7.50 - [-\log(4.3 \times 10^{-7})] = \log \left(\begin{bmatrix} HCO_{3}^{-} \\ H_{2}CO_{3} \end{bmatrix} \right)$ $\log \left(\begin{bmatrix} HCO_{3}^{-} \\ H_{2}CO_{3} \end{bmatrix} \right) = 1.133468456$ $10^{1.133468456} = \left(\begin{bmatrix} HCO_{3}^{-} \\ H_{2}CO_{3} \end{bmatrix} \right)$ $\left(\begin{bmatrix} HCO_{3}^{-} \\ H_{2}CO_{3} \end{bmatrix} \right)$

One way to make this HCO₃⁻/H₂CO₃ buffered solution (pH = 7.50) is to use 0.136 M of NaHCO₃ (*aq*) with 0.0100 M of H₂CO₃ (*aq*). The conjugate base/acid ratio would be $\frac{0.136 \text{ M}}{0.0100 \text{ M}} \approx 13.59779394$.

Buffering Capacity: - the amounts of H^+ or OH^- a buffered solution can handle before there is a significant change in pH.

- a large buffering capacity means it can absorb large amount of H⁺ or OH⁻ before there is a notable change in pH.
- depends very much on the conjugate base/acid ratio $\left(\frac{|A^-|}{|HA|}\right)$.
- the <u>optimal buffering</u> occurs <u>when $[A^-] = [HA]$ </u> and they are <u>relatively large</u> <u>compared to the amounts of H⁺ or OH⁻ added</u>.

Optimal Buffering Capacity

 $\mathbf{pH} = \mathbf{pK}_a + \log\left(\begin{bmatrix}\mathbf{A}^{-}\\\mathbf{H}\mathbf{A}\end{bmatrix}\right)^{\mathbf{T}}$

pH = **p***K*_a (for Best Buffering Capacity)

Therefore, the <u>desired pH</u> for the buffered solution <u>should be the SAME as the pK_a of the weak acid, HA.</u>

Example 7: Calculate the pH of a 1.00 L buffered solution consisting of 0.0300 M of NaC₂H₅COO_(*aq*)/ C₂H₅COOH_(*aq*) and another 1.00 L buffered solution consisting of 3.00 M of NaC₂H₅COO_(*aq*)/ C₂H₅COOH_(*aq*) ($K_{a1} = 1.3 \times 10^{-5}$). What are the new pHs after 0.0150 mol of NaOH is added to them?

First, we have to figure out the $[H_3O^+]$ and pH for the 0.0300 M of $NaC_2H_5COO_{(aq)}/C_2H_5COOH_{(aq)}$ buffered system.

Propanoic Acid	Dissociation:	issociation: $C_2H_5COOH_{(aq)} + H_2O_{(l)} \Rightarrow H_3O^+_{(aq)} + C_2H_5COO^{(aq)}$					
Sodium Propan	oate:	Na	$NaC_2H_5COO_{(aq)} \rightarrow Na^+_{(aq)} + C_2H_5COO^{(aq)}$				
			0.0300 M	0.0300 M			
C ₂ H ₅ CO	$OH_{(aq)} + H_2O_{(l)}$	\Rightarrow H ₃ O ⁺ _(aq)	+ $C_2H_5COO^{(aq)}$	CAN use Approximation:			
	[C ₂ H ₅ COOH]	$[H_3O^+]$	[C ₂ H ₅ COO]	$[C_2H_5COOH]_0$ 0.0300 M			
Initial	0.0300 M	0	0.0300 M	$\frac{1}{K} = \frac{1}{13 \times 10^{-5}}$			
Change	<i>-x</i>	+x	+ <i>x</i>	-2308 > 1000			
Equilibrium	(0.03 - x)	x	(0.03 + x)	$-2300 \ge 1000$ Use 0.03 in the numerator			
$K_{a} = \frac{\left[\mathrm{H}_{3}\mathrm{O}^{+}\right]\left[\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{O}^{+}\right]}{\left[\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{O}^{+}\right]}$	$\frac{H_5COO^-}{OOH}$ 1.3 ×	$10^{-5} = \frac{(x)(0.03)}{(0.03 - 0.03)}$	$\frac{(x+x)}{(x-x)} \approx \frac{x(0.03)}{(0.03)}$	because $(0.03 + x) \approx 0.03$ [x is so small compared to 0.03 M]. Use 0.03 in the denominator,			
$1.3 \times 10^{-5} \frac{(0.03)}{(0.03)}$	$\frac{y}{y} \approx x$	$K_a = [H_3O'] =$	$= x \approx 1.3 \times 10^{-3}$	small compared to 0.03 M].			
Verify that we c	ould use Approx	<u>kimation</u> :	pH = -log	$[H_2O^+] = \mathbf{n}K$			
$\frac{\left[\mathrm{H_{3}O^{+}}\right]}{\left[\mathrm{G_{11}G_{22}O^{+}}\right]}$	$\times 100\% = \frac{1.3 \times 100}{0.022}$	$\frac{0^{-5} M}{100\%} \times 100\%$	pH = -log((1.3×10^{-5})			
$[C_2H_5COOH]_0$ = 0.0433% $\leq 5^{\circ}$	0.030 % (Appropriate	00 M Approximatio	(Buff	Gered Solution) pH = 4.89			

Next, we have to figure out the $[H_3O^+]$ and pH for the 3.00 M of NaC₂H₅COO _(aq)/C₂H₅COOH _(aq) buffered system. Since 0.0300 M of buffer can use approximation, we would expect that we could also use approximation with 3.00 M of buffer solution.

$$K_{a} = \frac{\left[H_{3}O^{+}\right]\left[C_{2}H_{5}COO^{-}\right]}{\left[C_{2}H_{5}COOH\right]} \quad 1.3 \times 10^{-5} = \frac{(x)(3.00 + x)}{(3.00 - x)} \approx \frac{x(3.00)}{(3.00)} \qquad pH = -\log[H_{3}O^{+}] = pK_{a}$$

$$pH = -\log[H_{3}O^{$$

Calculate new pH after 0.0150 mol of NaOH is added to the 0.0300 M of $NaC_2H_5COO_{(aq)}/C_2H_5COOH_{(aq)}$ Buffered Solution. (Complete Reaction between OH⁻ & C₂H₅COOH).

	OH (<i>aq</i>) +	- $C_2H_5COOH_{(aq)}$ -	$\rightarrow \mathbf{H}_2\mathbf{O}_{(l)} + \mathbf{C}_2\mathbf{H}_5\mathbf{C}\mathbf{O}\mathbf{O}_{(aq)}$
	<i>n</i> of OH ⁻	<i>n</i> of C ₂ H ₅ COOH	$n \text{ of } C_2 H_5 COO^-$
Before	0.0150 mol (Limiting)	0.0300 mol	0.0300 mol
Change	– 0.0150 mol	– 0.0150 mol	+ 0.0150 mol
After	0	0.0150 mol	0.0450 mol

$$[C_{2}H_{5}COOH]_{eq} \approx [C_{2}H_{5}COOH]_{0} = \frac{0.0150 \text{ mol}}{1.00 \text{ L}} = 0.0150 \text{ M}$$

$$[C_{2}H_{5}COO^{-}]_{eq} \approx [C_{2}H_{5}COO^{-}]_{0} = \frac{0.0450 \text{ mol}}{1.00 \text{ L}} = 0.0450 \text{ M}$$

$$[C_{2}H_{5}COO^{-}]_{eq} \approx [C_{2}H_{5}COO^{-}]_{0} = \frac{0.0150 \text{ mol}}{1.00 \text{ L}} = 0.0450 \text{ M}$$

$$[CAN use Approximation:
$$[C_{2}H_{5}COOH]_{0} = \frac{0.0150 \text{ mol}}{1.3 \times 10^{-5}}$$

$$= 1154 \ge 1000 \text{ mol}$$$$

For the buffered solution with NaOH added, we can again use the Henderson-Hasselbalch Equation.

$$pH = pK_a + \log\left(\frac{\left[C_2H_2COO^{-}\right]}{\left[C_2H_2COOH\right]}\right) = -\log K_a + \log\left(\frac{\left[C_2H_2COO^{-}\right]}{\left[C_2H_2COOH\right]}\right)$$

$$pH = -\log(1.3 \times 10^{-5}) + \log\left(\frac{0.0450 \text{ M}}{0.0150 \text{ M}}\right)$$

$$pH \text{ changed from 4.89 to 5.36}$$

PH (0.0300 M Buffered Solution with NaOH added) = 5.36

Calculate new pH after 0.0150 mol of NaOH is added to the 3.00 M of $NaC_2H_5COO_{(aq)}/C_2H_5COOH_{(aq)}$ Buffered Solution. (Complete Reaction between OH⁻ & C₂H₅COOH).

 $OH^{-}_{(aq)} + C_{2}H_{5}COOH_{(aq)} \rightarrow H_{2}O_{(l)} + C_{2}H_{5}COO^{-}_{(aq)}$

	n of OH [−]	<i>n</i> of C ₂ H ₅ COOH	<i>n</i> of C ₂ H ₅ COO ⁻
Before	0.0150 mol (Limiting)	3.00 mol	3.00 mol
Change	– 0.0150 mol	– 0.0150 mol	+ 0.0150 mol
After	0	2.985 mol	3.015 mol

$$[C_{2}H_{5}COOH]_{eq} \approx [C_{2}H_{5}COOH]_{0} = \frac{2.985 \text{ mol}}{1.00 \text{ L}} = 2.985 \text{ M}$$
$$[C_{2}H_{5}COO^{-}]_{eq} \approx [C_{2}H_{5}COO^{-}]_{0} = \frac{3.015 \text{ mol}}{1.00 \text{ L}} = 3.015 \text{ M}$$

CAN use Approximation:

$$\frac{\left[C_{2}H_{5}COOH\right]_{0}}{K_{a}} = \frac{2.985 \text{ M}}{1.3 \times 10^{-5}}$$
$$= 229615 > 1000$$

For the buffered solution with NaOH added, we can again use the Henderson-Hasselbalch Equation.

$$pH = pK_a + \log\left(\frac{\left[C_2H_2COO^{-}\right]}{\left[C_2H_2COOH\right]}\right) = -\log K_a + \log\left(\frac{\left[C_2H_2COO^{-}\right]}{\left[C_2H_2COOH\right]}\right)$$

$$pH = -\log(1.3 \times 10^{-5}) + \log\left(\frac{3.015 \text{ M}}{2.985 \text{ M}}\right) \qquad pH \text{ stayed at 4.89} \text{ from before}$$

$$pH (3.00 \text{ M Buffered Solution with NaOH added}) = 4.89$$

$$Hence, when [A^{-}] = [HA] \text{ and if both concentrations} \text{ are large, then we achieve optimal buffering capacity.}$$

 $N K_a$.

 82×10^{-6}

Example 8: Calculate the number of moles of HI (*aq*) that must be added to 0.500 L of 2.00 mol/L of $C_5H_5NHI_{(aq)}$ (K_b of $C_5H_5N = 1.7 \times 10^{-9}$) to produce a solution buffered at pH = 4.75.

$$C_{5}H_{5}NHI: C_{5}H_{5}NHI_{(aq)} \rightarrow C_{5}H_{5}NH^{+}_{(aq)} + \Gamma_{(aq)}$$

$$2.00 M 2.00 M$$

$$C_{5}H_{5}NH^{+}_{i} is a weak acid. Hence, we need to write the acid dissociation reaction and obtain K_{a} .

$$C_{5}H_{5}NH^{+}_{(aq)} + H_{2}O_{(l)} \Rightarrow H_{3}O^{+}_{(aq)} + C_{5}H_{5}N_{(aq)} \qquad K_{a} = \frac{K_{w}}{K_{b}} = \frac{1.0 \times 10^{-14}}{1.7 \times 10^{-9}} \qquad K_{a} = 5.882 \times 10^{-14}$$
Adding HI (or H₃O⁺) will react completely with the base $C_{5}H_{5}N:$

$$C_{5}H_{5}N(_{(aq)}) + H_{3}O^{+}_{(aq)} \rightarrow H_{2}O_{(l)} + C_{5}H_{5}NH^{+}_{(aq)}$$

$$[C_{5}H_{5}N] = [HI]$$
For the buffered solution, we can use the Henderson-Hasselbalch Equation to find $\left(\frac{[C_{5}H_{5}N]}{[C_{5}H_{5}NH^{+}]} \right)$

$$pH = pK_{a} + \log \left(\frac{[C_{3}H_{5}N]}{[C_{5}H_{5}NH^{+}]} \right)$$

$$pH - pK_{a} = \log \left(\frac{[C_{5}H_{5}N]}{[C_{5}H_{5}NH^{+}]} \right)$$

$$log \left(\frac{[C_{5}H_{5}N]}{2.00 \text{ M}} \right) = -0.4804749798$$

$$10^{-0.484749798} = \left(\frac{[C_{5}H_{5}N]}{2.00 \text{ M}} \right)$$

$$log \left(\frac{[C_{5}H_{5}N]}{2.00 \text{ M}} \right) = -0.4804749798$$

$$10^{-0.484749798} = \left(\frac{[C_{5}H_{5}N]}{2.00 \text{ M}} \right)$$

$$R_{HI} = [HI]V = (0.662 \text{ mol/L})(0.500 \text{ L})$$

$$R_{HI} = 0.331 \text{ mol}$$$$

Example 9: From a list of the K_a below, select the buffered solution that has a pH of around 3.20. Write up a procedure that makes 1.00 L of this particular buffered solution.

> $K_a = 1.35 \times 10^{-3}$ Monochloracetic Acid $(HC_2H_2ClO_2_{(aq)})$ $K_a = 7.2 \times 10^{-4}$ Hydrofluoric Acid (HF (*aq*)) $K_a = 4.0 \times 10^{-4}$ Nitrous Acid (HNO_{2 (aq)} Methanoic Acid (HCOOH (*aa*)) $K_a = 1.8 \times 10^{-4}$

For Optimal Buffering Capacity, $[HA] = [A^{-}]$, which means $pH = pK_a$.

$$pK_a = -\log_{u} K_a$$

 $K_a = 10^{-pKa} = 10^{-(3.20)}$ $K_a = 6.31 \times 10^{-4}$ (Closest Weak Acid to this K_a is HF (aa))

Possible Procedure to Make 2.00 M of F⁻/HF Buffered Solution.

(Large concentrations are needed for good buffering capacity.)

- 1. Obtain 1.00 L of 2.00 M of HF. (May entail dilution from stock solution.)
- 2. Dissolve 83.98 g of NaF ($m = nM = 2.00 \text{ mol/L} \times 1.00 \text{ L} \times 41.99 \text{ g/mol}$) into the 1.00 L of 2.00 M HF (aa)

Assignment

16.1 & 16.2 pg. 740 #1 to 6; #7 to 20; pg. 744 #102 and 107

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 333.

16.4: Acid-Base Titrations

- <u>**pH Curve**</u>: a graph that shows the how the pH changes as the titration proceeds (as titrant is to the analyzed).
- <u>**Titration**</u>: a volumetric analysis that involves measuring the volume of known concentration solution to measure a given volume of an unknown concentration solution.

Titration Set-up

<u>Acid-Base Titration</u>: - volumetric analysis that assist in determining the unknown concentration in an acid and base neutralization.

Equivalent Point (Stoichiometric Point): - a point where the number of moles of H^+ is equivalent to the number of moles of OH^- . $(n_H^+ = n_{OH}^-)$

- **Endpoint**: a point where the indicator actually changes colour to indicate neutralization is completed.
- Indicator: a chemical that changes colour due to the pH of the solution (more in the next section).
- **Inflection**: the part of the curve where there is a sudden rise or drop in pH.
 - the midpoint of the inflection marks the equivalence point.

1. <u>Titration Between Strong Acids and Strong Base</u>: - Equivalence Point always occur at pH = 7.

Strong Acid (unknown concentration with known volume - analyte) titrated with Strong Base (known concentration - titrant)

Strong Base (unknown concentration and known volume - analyte) titrated with Strong Acid (known concentration - titrant)

Chamical	L of KOH (aq) added:	(Stoichiometric l	Point)	
Circinicai	Species Present:	H_3O^+ , CI^- , K^+ , O_R^+	А ОН ⁻ , H ₂ O SB B	
Net-Ionic	Equation:	$H_3O^+_{(aq)}$	+ OH ⁻ _(aq)	\rightarrow 2 H ₂ O _(l)
Before Change	<i>n</i> of H (0.100 mol/L)(30.00 - 3.00 r	mL) = 3.00 mmol	(0.200 mol/L	$n \text{ of OH}^-$)(15.00 mL) = 3.00 mmol
After	0.00 m	mol		0.00 mmol
$[H_3O^+] = [0]$ pH = -log	$OH^{-}] = 1.00 \times 10^{-7} model{eq:optimal_scalar}$ $[H_3O^{+}] = -log(1.00 \times 10^{-7})$	ol/L 10 ⁻⁷)		pH = 7.00
d. At 20.00 m	nL of KOH (aq) added:	(After Stoichiomo	etric Point) A	
Chemical	Species Present:	H_3O^+ , Cl^- , K^+ , B	ОН⁻, H ₂ O SB В	
Net-Ionic	Equation:	$H_3O^+_{(aq)}$	+ OH ⁻ _(aq)	\rightarrow 2 H ₂ O (<i>l</i>)
	n of H	$[_{3}\mathbf{O}^{+}]$		<i>n</i> of OH [−]
Before	(0.100 mol/L)(30.00	mL) = 3.00 mmol	(0.200 mol/L	(20.00 mL) = 4.00 mmol
Change	(Limiting H	Reagent)		2.00
	- 3.00 I	nmoi	-	- 3.00 mmoi
After	0.00 m	mol		1.00 mmol
$[OH^-] = -T$	$\frac{n_{\text{OH}^-}}{\text{otal Volume}} = \frac{1}{(30.00)}$	$\frac{1.00 \text{ mmol}}{1 \text{ mmol}} = \frac{1.00 \text{ mmol}}{1.00 \text{ mmol}}$	= 0.0200 mol/L	1.00 mmol
$[OH^-] = -$ T $pOH = -1$	$\frac{n_{\text{OH}^-}}{\text{otal Volume}} = \frac{1}{(30.00)}$ $\log [\text{OH}^-] = -\log(0.02)$	1.00 mmol 0 mL + 20.00 mL) 200)	= 0.0200 mol/L	1.00 mmol pOH = 1.70

pH o	of 30.0	mL	of 0.1	00 M	HCl _{(a}	a) titrated	by 0.20	0 M o	f KOH (aa)
						- /			

Volume of KOH added	pН	Volume of KOH added	pН	Volume of KOH	pН
				added	
0.00 mL	1.00	14.60 mL	2.75	15.40 mL	11.25
5.00 mL	1.24	14.80 mL	3.05	15.60 mL	11.42
10.00 mL	1.60	14.90 mL	3.35	15.80 mL	11.54
11.00 mL	1.71	14.95 mL	3.65	16.00 mL	11.64
12.00 mL	1.85	14.99 mL	4.35	20.00 mL	12.30
13.00 mL	2.03	15.00 mL (Equivalence)	7.00	25.00 mL	12.56
14.00 mL	2.34	15.01 mL	9.65	30.00 mL	12.70
14.20 mL	2.44	15.05 mL	10.35	35.00 mL	12.79
14.40 mL	2.57	15.20 mL	10.95		

2. <u>Titration Between Weak Acids and Strong Base</u>: - Equivalence Point always occur at pH > 7.

Unit 6: Acids-Bases and Solubility Equilibrium

Example 2: Calculate the pH when 30.0 mL of 0.100 M of HCOOH_(aa) ($K_a = 1.8 \times 10^{-4}$) is titrated with $0.200 \text{ mol/L of KOH}_{(aq)}$ at:

- a. $0 \text{ mL of KOH}_{(aq)}$ added.
- c. $15.00 \text{ mL of KOH}_{(aq)}$ added.

- b. 7.50 mL of $KOH_{(aq)}$ added.
- d. 20.00 mL of KOH (aq) added.

a. At 0 mL of KOH_(aq) added, the pH will be calculated the weak acid dissociation in the flask:

 $\text{HCOOH}_{(aq)} + \text{H}_2\text{O}_{(l)} \rightleftharpoons \text{H}_3\text{O}^+_{(aq)} + \text{HCOO}^-_{(aq)}$ [HCOOH] [H₃O⁺] [HCOO⁻] Initial 0.100 M 0 **0 M** Change +x+x-xEquilibrium (0.1 - x)x x

$$K_{a} = \frac{[\text{H}_{3}\text{O}^{+}][\text{HCOO}^{-}]}{[\text{HCOOH}]} = \frac{1.8 \times 10^{-4}}{(0.1-x)} = \frac{x^{2}}{(0.1-x)}$$
$$[\text{H}_{3}\text{O}^{+}] = x = 0.0042 \text{ mol/L}$$

$$pH = -log [H_3O^+] = -log(0.042)$$

b. At 7.50 mL of KOH_(aq) added: (Before Stoichiometric Point: at Halfway to Equivalence Point) **Chemical Species Present: HCOOH, K^+, OH**⁻, H₂O SA SB A/B

Net-Ionic Equation: HCOOH (aa) $OH^{-}_{(aq)}$ \rightarrow H₂O_(l) + HCOO⁻_(aq) + n of HCOOH n of OH⁻ n of HCOO⁻ (0.100 mol/L)(30.00 mL) (0.200 mol/L)(7.50 mL) 0 mmol Before = 3.00 mmol= 1.50 mmol (LR)Change - 1.50 mmol – 1.50 mmol + 1.50 mmol After 1.50 mmol 0 mmol **1.50 mmol** $[\text{HCOOH}] = \frac{n_{\text{HCOOH}}}{\text{Total Volume}} = \frac{1.50 \text{ mmol}}{(30.00 \text{ mL} + 7.50 \text{ mL})}$ = 0.0400 mol/L $[HCOOH] = [HCOO^{-}]$ $\mathbf{pH} \approx \mathbf{p}K_a$ $[\text{HCOO}^{-}] = \frac{n_{\text{HCOO}^{-}}}{\text{Total Volume}} = \frac{1.50 \text{ mmol}}{(30.00 \text{ mL} + 7.50 \text{ mL})}$ = 0.0400 mol/L(Max Buffer Capacity) After all the OH⁻ is used up, the resulting solution follows the regular weak acid dissociation. $HCOOH \rightarrow HO \rightarrow HO^{+} \rightarrow HOO^{-}$

$$\frac{|\text{HCOOH}_{(aq)} + \text{H}_2\text{O}_{(b)} = \text{H}_3\text{O}_{(aq)} + \text{HCOO}_{(aq)}}{|\text{HCOO}_1|}$$

$$\frac{|\text{HCOOH}_1| + |\text{H}_3\text{O}_1| + |\text{HCOO}_1|}{|\text{Change}_1 - x + x + x + x + x}$$

$$\frac{|\text{Equilibrium}_1| + |\text{Equilibrium}_2| +$$

before the stoichiometric point is listed on page 306.)

Copyrighted by Gabriel Tang B.Ed., B.Sc.

0.0400 M 1.8×10^{-4} = 222.22 < 1000

= 3.75

$\frac{[\text{HCOOH}]_0}{K_a}$	$h = \frac{0.100 \mathrm{M}}{1.8 \times 10^{-4}}$
	= 555.6 < 1000
solve() 1.8±-4,	(2/(.1-X)- (X,0,(0,0.
	0041535952
C	pH = 2.38

CANNOT use Approximation:

a At 15.00 mI	of KOH added: (Staichian	notric Point)					
Chemical Species Present: HCOOH , K^+ OH ⁻ , H ₂ O								
SA SB A/B								
Net-Ionic F	Net-Jonic Equation: $HCOOH_{C} \rightarrow H_{C}OO_{C}$							
	<i>n</i> of HCOO	\mathbf{H}	n of Ol	aq) /	$n \text{ of HCOO}^-$			
Before	(0.100 mol/L)(30.	00 mL)	(0.200 mol/L)(1	5.00 mL)	0 mmol			
	= 3.00 mmc	ol	= 3.00 m	mol				
Change	– 3.00 mmc	ol	– 3.00 m	mol	+ 3.00 mmol			
After	0 mmol		<u> </u>	ol	3.00 mmol			
$[HCOO^{-}] =$	n _{HCOO}	3.00 m m	$\frac{\text{ol}}{\text{ol}} = 0.066$	7 mol/I				
	Total Volume (30.0	0 mL + 15	$0.00 \mathrm{mL})$	// 11101/12				
At Stoichion	etric Point, after all th	e OH [–] an	d HCOOH are us	sed up, the res	ulting solution follows			
the regular v	veak base dissociation.			CAN use A	approximation:			
	$\frac{\mathrm{HCOO}^{-}_{(aq)} + \mathrm{H}_{2}\mathrm{O}_{(l)}}{\mathrm{H}_{2}\mathrm{O}_{(l)}}$	<mark>⇒ HCOO</mark>	$H_{(aq)} + OH_{(aq)}$					
T		[HCO		HCOO Jo	$=\frac{0.066 / M}{5.55 (-10^{-11})}$			
Initial Change	0.0007 M	U +1	r + r	K _b	5.556×10 ···			
Equilibrium	(0.0667 - x)	x	x		$= 1.2 \times 10^{\circ} \ge 1000$			
<u> </u>	10-14			because (0	1000000000000000000000000000000000000			
$K_b = \frac{K_w}{K} = \frac{1.0}{1.0}$	$\frac{\times 10^{-4}}{10^{-4}}$ $K_b = 5.556 >$	$< 10^{-11} = .$		is so small	compared to 0.0667 M].			
$K_a = 1.8$	×10			2				
	5.556 >	$< 10^{-11} = -$	$\frac{(x)(x)}{(x)} \approx -\frac{1}{2}$	$\frac{x^2}{x}$				
			(0.0667 - x) = 0	.0667				
[OH ⁻] =	$x = 1.92 \times 10^{-6} \text{ mol/L}$			pOH = -log	$g(1.92 \times 10^{-6}) = 5.72$			
pH = 14 – p (OH = 14 - 5.72		•	pH = 8.28	>			
d. At 20.00 mL	of KOH (aa) added: (A	fter Stoid	chiometric Poin	t)				
Chemical S	becies Present:	СООН,	K ⁺ , OH ⁻ , H ₂ C					
		SA	SB A/E	•				
Not Ionia Equation: $UCOOU \pm OU^{-1}$ $\downarrow UCOO^{-1}$								
Net-Ionic Ed	uation: HCOOH	$\mathbf{I}_{(aa)}$ +	OH-	$(aa) \rightarrow$	$H_2O_{(l)} + HCOO^{-}_{(aa)}$			
Net-Ionic Ed	quation: HCOOH n of HCOOH	H (<i>aq</i>) +	OH ⁻ <i>n</i> of OH	$(aq) \rightarrow$	$H_2O_{(l)} + HCOO^{-}_{(aq)}$			
Before	n of HCOOH (0.100 mol/L)(30.0	$\begin{array}{c c} \mathbf{I}_{(aq)} & + \\ \mathbf{H}_{(aq)} & \\ \mathbf{H}_{(aq)} & \\ 00 \text{ mL} \end{array}$	OH <i>n</i> of OH (0.200 mol/L)(2	$(aq) \rightarrow 1$ $(aq) \rightarrow 0.00 \text{ mL}$	$H_2O_{(l)} + HCOO^{(aq)}$			
Before	n of HCOOI (0.100 mol/L)(30.0) = 3.00 mmol (1)	H (aq) + H 00 mL) LR)	OH n of OH (0.200 mol/L)(2 = 4.00 mr	$(aq) \rightarrow (1000 \text{ mL})$	$H_2O_{(l)} + HCOO^{(aq)}$			
Before Change	n of HCOOI (0.100 mol/L)(30.0 = 3.00 mmol (1 - 3.00 mmol	I (aq) + H 00 mL) LR) I	OH [−] <i>n</i> of OH (0.200 mol/L)(2 = 4.00 mr - 3.00 m r	(aq) → [- 0.00 mL) nol nol	$H_2O_{(l)} + HCOO_{(aq)}$			
Before Change After	n of HCOOI (0.100 mol/L)(30.0) = 3.00 mmol (1) - 3.00 mmol 0 mmol	I (aq) + H 00 mL) LR) I	OH <i>n</i> of OH (0.200 mol/L)(2 = 4.00 mr - 3.00 mr 1.00 m	$(aq) \rightarrow (aq)$	$H_2O_{(l)} + HCOO_{(aq)}$			
Net-Ionic EdBeforeChangeAfterAfter all theChamical St	n of HCOOI n of HCOOI $(0.100 mol/L)(30.0)$ $= 3.00 mmol$ $-3.00 mmol$ $0 mmol$ HCOOH is used up, the parameter is the par	$ \begin{array}{c} I_{(aq)} + \\ H \\ 00 mL) \\ LR) \\ I \\ ne resultin \end{array} $	OH ⁻ <i>n</i> of OH (0.200 mol/L)(2 = 4.00 mr - 3.00 mr 1.00 mr g solution has th	$(aq) \rightarrow (1-a)$ $(1-a)$	$H_2O_{(l)} + HCOO_{(aq)}$ ajor species.			
BeforeChangeAfterAfter all theChemical Space	n of HCOOH n of HCOOH (0.100 mol/L)(30.0) = 3.00 mmol (I - 3.00 mmol 0 mmol HCOOH is used up, th becies Present:	$ \begin{array}{c} I_{(aq)} + \\ H \\ 00 mL) \\ LR) \\ LR) \\ I \\ te resultine \\ C^+, OH^-, \\ SB \end{array} $	OH <i>n</i> of OH (0.200 mol/L)(2 = 4.00 mr - 3.00 mr 1.00 mr g solution has th H ₂ O A/B	$(aq) \rightarrow (1-a)$ (aq)	$H_2O_{(l)} + HCOO_{(aq)}$ ajor species.			
Before Change After After all the Chemical Sp	n of HCOOHn of HCOOH $(0.100 \text{ mol/L})(30.0)$ $= 3.00 \text{ mmol}$ -3.00 mmol HCOOH is used up, thebecies Present:K n_{OHT} 1.00 mode	$ \begin{array}{c} I_{(aq)} + \\ H \\ 00 mL) \\ LR) \\ I \\ I \\ I \\ I \\ resultine resultine \\ C^+, OH^-, \\ SB \\ 00 mmol $	OH <i>n</i> of OH (0.200 mol/L)(2 = 4.00 mr - 3.00 mr 1.00 mr g solution has th H ₂ O A/B	$(aq) \rightarrow (1-a)$ (aq)	$H_2O_{(l)} + HCOO_{(aq)}$ ajor species.			
Ret-Ionic EdBeforeChangeAfterAfter all theChemical Sp $[OH^-] =$	n of HCOOHn of HCOOH(0.100 mol/L)(30.0) $= 3.00 \text{ mmol}$ -3.00 mmol 0 mmolHCOOH is used up, thvecies Present:K n_{OH^-} al Volume $= \frac{1.0}{(30.00 \text{ mmol})}$	$H_{(aq)} + H_{(aq)} $	OH ⁻ <i>n</i> of OH (0.200 mol/L)(2 = 4.00 mr - 3.00 mr 1.00 mr g solution has th H ₂ O A/B 	$(aq) \rightarrow (1-a)$ (aq)	$H_2O_{(l)} + HCOO^{(aq)}$ ajor species. $H = -\log(0.0200) = 1.70$			
BeforeChangeAfterAfter all theChemical Sp $[OH^-] = - Tot$	n of HCOOI n of HCOOI (0.100 mol/L)(30.0) = 3.00 mmol (1) - 3.00 mmol 0 mmol HCOOH is used up, th becies Present: K n_{OH^-} al Volume	$H_{(aq)} + H_{(aq)} $	OH^{-} <i>n</i> of OH (0.200 mol/L)(2 = 4.00 mr - 3.00 mr 1.00 mr g solution has th H ₂ O A/B 	$(aq) \rightarrow (aq)$	$H_2O_{(l)} + HCOO_{(aq)}$ ajor species. H = -log(0.0200) = 1.70 pH = 12.30			
Net-Ionic EdBeforeChangeAfterAfter all theChemical Si $[OH^-] = - Tot$ (pH's results fro	quation:HCOOHn of HCOO $(0.100 \text{ mol/L})(30.0)$ $= 3.00 \text{ mmol}$ $= 3.00 \text{ mmol}$ 0 mmol HCOOH is used up, thbecies Present:K n_{OH^-} al Volume 1.00 mmol 1.00 mmol 1.00 mmol	$H_{(aq)} + H_{(aq)} $	$ OH^{-} n of OH (0.200 mol/L)(2 = 4.00 mr - 3.00 mr - 3.00 mr 1.00 mr g solution has th H2O A/B $	(aq) \rightarrow [- (0.00 mL) (aq) ($H_2O_{(l)} + HCOO_{(aq)}$ ajor species. H = -log(0.0200) = 1.70 pH = 12.30 etric point is listed on the			

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 339.

Volume of KOH added	pН	Volume of KOH added	pН	Volume of KOH added	pН
0.00 mL	2.38	14.40 mL	5.13	15.20 mL	10.95
5.00 mL	3.45	14.60 mL	5.31	15.40 mL	11.25
7.50 mL (Halfway to Equivalence)	3.75	14.80 mL	5.62	15.60 mL	11.42
10.00 mL	4.05	14.90 mL	5.91	15.80 mL	11.54
11.00 mL	4.19	14.95 mL	6.22	16.00 mL	11.64
12.00 mL	4.35	14.99 mL	6.92	20.00 mL	12.30
13.00 mL	4.56	15.00 mL (Equivalence)	8.28	25.00 mL	12.56
14.00 mL	4.89	15.01 mL	9.65	30.00 mL	12.70
14.20 mL	5.00	15.05 mL	10.35	35.00 mL	12.79

pH of 30.0 mL of 0.100 M HCOOH (aq) titrated by 0.200 M of KOH (aq)

3. <u>Titration Between Weak Bases and Strong Acid</u>: - Equivalence Point always occur at pH < 7.

Weak Base (unknown concentration with known volume - analyte) titrated with Strong Acid (known concentration - titrant)

Example 3: Calculate the pH when 30.0 mL of 0.100 M of $CH_3NH_{2(aq)}$ ($K_b = 4.38 \times 10^{-4}$) is titrated with 0.200 mol/L of HCl_(aq) at:

- a. $0 \text{ mL of HCl}_{(aq)}$ added.
- c. 15.00 mL of $HCl_{(aq)}$ added.

- b. 7.50 mL of $HCl_{(aq)}$ added.
- d. 20.00 mL of $HCl_{(aq)}$ added.

a. At 0 mL of HCl_(aq) added, the pH will be calculated the weak base dissociation in the flask:

 $CH_3NH_2(aq) + H_2O(l) \Rightarrow CH_3NH_3^+(aq) + OH^-(aq)$ **CANNOT** use Approximation: [CH₃NH₂] [CH₃NH₃⁺] $[OH^{-}]$ $\frac{\left[CH_{3}NH_{2}\right]_{0}}{K_{1}} = \frac{0.100\,M}{4.38 \times 10^{-4}}$ Initial **0.100 M** 0 **0 M** K_{h} Change +x+x-x= 228.3 < 1000Equilibrium (0.1 - x)x x solve(X2/(0.1-X) $K_b = \frac{\left[CH_3 NH_3^+ \left[OH^- \right] \right]}{\left[CH_3 NH_3 \right]}$ $4.38 \times 10^{-4} = \frac{(x)(x)}{(0.1-x)} = \frac{x^2}{(0.1-x)}$ -4.38ε-4,Χ,0,(0, 0.1) .0064027793 $[OH^-] = x = 0.00640 \text{ mol/L}$ $pOH = -log [OH^-] = -log(0.00640) = 2.19$ pH = 14 - pOH = 14 - 2.19pH = 11.81

b.	At 7.50 mL	of $HCl_{(aq)}$ added: (B	efore Stoic	hiome	etric Point: at	: Halfwa	ıy t	o Equivalence Point)
Chemical Species Present: CH ₃ NH ₃				H_3O^4	, Cl^- , H_2O			
			SB	SA	A/B			
	Net-Ionic E	Equation: CH ₃ N	$H_{2(aq)}$ +	-	$H_3O^+_{(aq)}$	-	→	$\mathrm{H}_{2}\mathrm{O}_{(l)} + \mathrm{CH}_{3}\mathrm{NH}_{3}^{+}_{(aq)}$
		n of CH ₃ N	\mathbf{H}_{2}		$n \text{ of } H_3O^+$			<i>n</i> of $CH_3NH_3^+$
	Before	(0.100 mol/L)(3	0.00 mL)	(0.2	00 mol/L)(7.5	0 mL)		0 mmol
		= 3.00 mr	nol		1.50 mmol (I	LR)		
	Change	– 1.50 mr	- 1.50 mmol 1.50 mmol		– 1.50 mmo	l		+ 1.50 mmol
	After	1.50 mm			0 mmol			1.50 mmol
	$[CH_3NH_2] = \frac{n_{CH_3NH_2}}{\text{Total Volume}} = \frac{1.50 \text{ mmol}}{(30.00 \text{ mL} + 7.50 \text{ mL})} = 0.0400 \text{ mol/L} \qquad [CH_3NH_3^+] = [CH_2NH_2] \text{ pH} \approx pK_a$							$CH_3NH_3^+] = [CH_2NH_2]$ $pH \approx pK_a$
	[CH ₂ NH ₂ ⁺]	$= \underbrace{n_{\mathrm{CH}_3\mathrm{NH}_3^+}}_{=} = -$	1.50 m	mol	= 0.0400	mol/I	(Max Buffer Capacity)
		Total Volume (30.00 mL +	7.50	mL)			
	After all the	H_3O^+ is used up, the	resulting s	olutio	n follows the	egular v	vea	k base dissociation.
		$CH_3NH_2(aa) + H_2O(b)$	⇒ CH ₃ NF	$\mathbf{H}_{3}^{+}(aa)$	$+ OH^{-}(aa)$	CAN	NC	OT use Approximation:
		[CH ₃ NH ₂]	[CH ₃ N	$\mathbf{H}_{3}^{+}]$	[OH ⁻]	[ou	 	
In	nitial	0.0400 M	0		0.0400 M	[CH ₃	Nł	$\frac{1}{2} \int_{0} = \frac{0.0400 \text{ M}}{1}$
C	hange	<i>-x</i>	+x		+x	Ì	K_{b}	4.38×10^{-4}
E	quilibrium	(0.04 - x)	x		(0.04 + x)			= 91.3 < 1000
K _b	$= \frac{[CH_3NH_3]}{[CH_3N]}$	$\frac{[OH^{-}]}{[H_{2}]} \qquad 4.38 \times 10^{-1}$	$10^{-4} = \frac{(x)(x)}{(0)}$ $ x = 4.29$	0.04 + .04 - 2 × 10	- <u>x)</u> x) ⁻⁴ mol/L	9(() ,)	ol: 2.) X,) 4	ve(X(0.04+X)∕ 04-X)-4.38⊑-4 0,(0,0.04)) .287107932⊑-4
		pOH	$I = -\log \left[O\right]$	H ⁻] =	$-\log(4.29 \times 1)$	$0^{-4}) = 3.$	37	
		pl	H = 14 - pC	$\mathbf{D}\mathbf{H} = \mathbf{I}$	14 – 3.37			
(pF bef	I's results fro fore the stoic	om similar Calculatio hiometric point is list	ns with oth ed on the n	er vol ext pa	umes ge.)			pH = 10.63
c.	At 15.00 ml Chemical S	L of HCl (<i>aq</i>) added: pecies Present:	(Stoichion CH ₃ NH ₂ , SB	netric H ₃ O ⁺ SA	Point) , Cl^- , H_2O			
				NT L				
	Net-Ionic E	CH_3N	$H_{2(aq)}$ +	-	$H_3O'_{(aq)}$	_	→	$H_2O_{(l)} + CH_3NH_3'_{(aq)}$
	Defense	$\frac{n \text{ of CH}_3}{(0.100 \text{ m}_2)/(1.02)}$	(\mathbf{H}_2)	(0.20	$\frac{n \text{ of } H_3 U}{(15.0)}$)(<i>n</i> of CH ₃ NH ₃
	Belore	(0.100 mol/L)(3)	0.00 mL)	(0.20	-2.00 mm	JU ML)		0 mmoi
	Change	- 5.00 III	nol		-3.00 mmo	1		+ 3 00 mmol
	After		uur al		0 mmol	1		3.00 mmol
	Atter 0 mmol 0 mmol 3.00 mmol $[CH_3NH_3^+] = \frac{n_{CH_3NH_3^+}}{Total Volume} = \frac{3.00 \text{ mmol}}{(30.00 \text{ mL} + 15.00 \text{ mL})} = 0.0667 \text{ mol/L}$							

At Stoichiometric Point, after all the H_3O^+ and CH_3NH_2 are used up, the resulting solution follows the regular weak acid dissociation.

			TT 1 T		CAN use Ap	pproximation:			
	$(H_3NH_3 (aq) + H_2O(l))$	$= CH_3N$	$\mathbf{H}_{2(aq)} + \mathbf{H}$	13 U (aq)					
	$[CH_3NH_3^+]$	[CH	NH ₂	H_3O^+]	$[CH_3NH_3]_0$	$\frac{0}{1} = \frac{0.0667 \text{ M}}{100000000000000000000000000000000000$			
Initial	0.0667 M		D	0 M	K_{a}	2.28×10^{-11}			
Change	<i>-x</i>		x	+x		$= 2.9 \times 10^9 \ge 1000$			
Equilibrium	(0.0667 - x)		r	x	Use 0.0667 i	in the denominator.			
K 10	×10 ⁻¹⁴	[[тн мн 1		because (0.0	$(667 - r) \approx 0.03667$ [r			
$K_a = \frac{K_w}{K} = \frac{1.07}{4.20}$	$K_a = 2.28 \times$	$10^{-11} = \Gamma$		$\frac{\Pi_3 \cup \ }{1}$	is so small c	omnared to 0.0667 M			
$K_{b} = 4.38$	5×10 +		[CH ₃ NF	1 ₃]	is so sman c				
	$(x)(x) = x^2$								
	2.28 ×	$10^{10} = \frac{10^{10}}{10}$	0667 - r	$\overline{0} \approx \overline{0.06}$	67				
$(III O^{+}) = n = 1.2^{\circ}$	2 10 ⁻⁶	رب L = 100	$(11.0007 \times 1)^{-1}$	$1_{2} \sim (1.2)$	10-6	-11-5.01			
$[H_3 O] = x = 1.2.$	5×10 mol/L pr	1 10g	[H ₃ O] – -	-10g(1.23)	5×10)	pH = 5.91			
d. At 20.00 mL	of HCl _(aa) added: (Aft	er Stoich	iometric I	Point)					
Chemical Sn	ecies Present: Cl	H ₂ NH ₂ .	H_2O^+ . Cl^-	H ₂ O					
Chemical Sp		SR	SA	A/B					
		50		1 1/ D					
Net-Ionic Eq	uation: CH ₃ NH ₂	(aq) -	- F	$H_{3}O^{+}_{(aq)}$	\rightarrow H	$I_2O_{(l)} + CH_3NH_3^+(aq)$			
	n of CH ₃ NH	I ₂	n	of H ₃ O ⁺	-				
Before	(0.100 mol/L)(30.	00 mL)	(0.200 m	ol/L)(20.	.00 mL)				
	= 3.00 mmol (LR)	= 2	4.00 mm	ol				
Change	– 3.00 mmc	วไ ์	-3	3.00 mm	ol				
After	0 mmol	-	1	1.00 mm	ol				
				1	11 : :				
After all the C	$H_3 N H_2$ is used up, the	e resulting	solution I	nas the IC	blowing majo	or species.			
Chemical Sp	ecies Present: Cl	, H ₃ O',	H ₂ O						
		SA	A/B						
	$n_{\rm H_3O^+}$ 1.0	00 m mol	0	0000	1/T				
$[H_3O^*] = \frac{1}{Tot}$	ral Volume = (30.00 m)	L + 20.00	= 0.	.0200 mo	ol/L				
<i>"</i> IJ — 1	$\sim [11 \text{ O}^+] = -1 \sim (0.020)$	(1)	IIIL)			-11 - 1.70			
$p_{H} = -l_{0}$	$g[H_3O] = -\log(0.020)$	0)				$p_{H} = 1.70$			

(pH's results from similar Calculations with other volumes after the stoichiometric point is listed below.)

pH of 30.0 mL of 0.100 M CH₃NH_{2 (aq)} titrated by 0.200 M of HCl_(aq)

Volume of HCl added	pН	Volume of HCl added	рН	Volume of HCl added	pН
0.00 mL	11.81	14.40 mL	9.26	15.20 mL	3.05
5.00 mL	10.92	14.60 mL	9.08	15.40 mL	2.75
7.50 mL (Halfway to Equivalence)	10.63	14.80 mL	8.77	15.60 mL	2.58
10.00 mL	10.33	14.90 mL	8.47	15.80 mL	2.46
11.00 mL	10.20	14.95 mL	8.16	16.00 mL	2.36
12.00 mL	10.03	14.99 mL	7.46	20.00 mL	1.70
13.00 mL	9.82	15.00 mL (Equivalence)	5.91	25.00 mL	1.40
14.00 mL	9.49	15.01 mL	4.35	30.00 mL	1.30
14.20 mL	9.39	15.05 mL	3.65	35.00 mL	1.21

Example 4: Calculate the concentration of 10.00 mL of $Na_2S_{(aq)}$ is titrated with 0.0350 M of HBr_(aq) when the first and second equivalence points are at 13.34 mL and 27.88 mL respectively.

<u>For Acid-Base Stoichiometry, do NOT write the Net-Ionic Equation</u>. <u>Write the Molecular Equation</u> to do Stoichiometry. <u>We use the second equivalence point because Na₂S can accept two protons.</u>

16.5: Acid-Base Indicators

Acid-Base Indicators: - chemicals that change colours at a specific pH range.

- they are themselves organic acids. Since they are usually very big structurally, we usually use abbreviations to describe them in chemical equations.
- this is due to the acidic form of the indictor (HIn) has a different colour than its basic form (In⁻).
- the colour change occurs when $\frac{|In^-|}{|HIn|} = \frac{1}{10}$ (titrating an acid with a base) or when

 $\frac{|\text{In}^-|}{|\text{HIn}|} = \frac{10}{1}$ (titrating a base with an acid).

Using the Henderson-Hasselbach Equation to determine pH Range for Indictors to Change Colour:

 $pH = pK_a + \log\left(\frac{[In^-]}{[HIn]}\right)$ (Substitute observable Colour Change Ratio $\frac{[In^-]}{[HIn]} = \frac{1}{10} \text{ or } \frac{10}{1}$) $pH = pK_a + \log\left(\frac{1}{10}\right)$ or $pH = pK_a + \log\left(\frac{10}{1}\right)$ $pH = pK_a - 1$ or $pH = pK_a + 1$

> **<u>pH Range for Indictors to Change Colour</u> HIn** _(aq) + H₂O _(l) = H₃O⁺_(aq) + **In**⁻_(aq) **pH** = **pK**_a ± 1 **pH** ≤ (**pK**_a - 1) → Colour of HIn _(aq) **pH** ≥ (**pK**_a + 1) → Colour of In⁻_(aq) **pH** = **pK**_a → Mixed Colours of HIn _(aq) + In⁻_(aq)

Copyrighted by Gabriel Tang B.Ed., B.Sc.

<u>Page 345.</u>

Unit 6: Acids-Bases and Solubility Equilibrium

Example: Phenolphthalein (HPh_(aq)/Ph⁻_(aq)) changes colours from colourless to pink at a pH range of 8.0 to 10.0. At its mid-range (9.0 – average of 8.0 and 10.0), the colour would be light pink (colourless + pink).

 $\mathbf{HPh}_{(aq)} + \mathrm{H}_{2}\mathrm{O}_{(l)} \rightleftharpoons \mathrm{H}_{3}\mathrm{O}^{+}_{(aq)} + \mathbf{Ph}^{-}_{(aq)} \qquad K_{a} = 1.0 \times 10^{-9} \qquad \mathrm{p}K_{a} = 9 \qquad \mathrm{Colour\ Change} = 9 \pm 1$ (Colourless)

At pH \leq 9, phenolphthalein is colourless. At pH \geq 10, phenolphthalein is pink.

Example: Bromothymol Blue (HBb $_{(aq)}$ /Bb $^{-}_{(aq)}$) changes colours from yellow to blue at a pH range of 6.0 to 8.0. At its mid-range (7.0 – average of 6.0 and 8.0), the colour would be green (yellow + blue).

HBb $_{(aq)}$ + H₂O $_{(l)}$ \Rightarrow H₃O⁺ $_{(aq)}$ + **Bb**⁻ $_{(aq)}$ $K_a = 1.0 \times 10^{-7}$ p $K_a = 7$ Colour Change = 7 ± 1 (Yellow) (Blue)

At pH \leq 6, bromothymol blue is yellow.

At pH \geq 8, bromothymol blue is blue.

Example 1: The pH curve of methylamine with HCl has an equivalence point at pH = 5.91. Using the following information below, decide on an indicator to use in this titration and state what colour change the experimenter should be looking for.

Indicators	Colour Change	Ka
methyl orange	red to yellow	1.6×10^{-4}
methyl red	red to yellow	1.0×10^{-5}
bromocresol purple	yellow to purple	2.0×10^{-6}
bromothymol blue	yellow to blue	1.0×10^{-7}

First, we need to decide on the pH range that these indicators will change colors.

Indicators	Colour Change	Ka	pH range $(pK_a \pm 1)$
methyl orange	red to yellow	1.6×10^{-4}	3.8 ± 1 (2.8 to 4.8)
methyl red	red to yellow	1.0×10^{-5}	5.0 ± 1 (4.0 to 6.0)
bromocresol purple	yellow to purple	2.0×10^{-6}	5.7 ± 1 (4.7 to 6.7)
bromothymol blue	yellow to blue	1.0×10^{-7}	$7.0 \pm 1 \ (6.0 \text{ to } 8.0)$

We can see that pH = 5.91 is well within the color change of **bromocresol purple** (for methyl red. it is too close to the boundary point). The color where the experimenter will stop is brown (yellow + purple) with the pH = 5.7 (end-point).

<u>Assignment</u> 16.4 pg. 741 #22 to 32; pg. 734–744 #88 and 106 16.5 pg. 741 #33 to 38; pg. 744 #100

<u>16.6: Solubility Equilibria</u>

<u>Solubility Product</u> (K_{sp}) : - the equilibrium constant as a salt dissolves into its aqueous ions.

- sometimes refer to as solubility product constant.
- like equilibrium constant, <u>*K_{sp}* is unitless</u>.

Molar Solubility: - the equilibrium position of the solvation equilibrium.

- the maximum amount of salts in moles dissolved per Litre of solvent.

<u>Solubility</u>: - the maximum mass of salts in moles dissolved per Litre of solvent.

 $\mathbf{A}_{x}\mathbf{B}_{y(s)} \rightleftharpoons x\mathbf{A}^{y+}_{(aq)} + y\mathbf{B}^{x-}_{(aq)}$ $K_{sp} = [\mathbf{A}^{y+}]^{x}[\mathbf{B}^{x-}]^{y} \qquad \text{Molar Solubility} = [\mathbf{A}_{x}\mathbf{B}_{y}] \qquad \text{Solubility} = [\mathbf{A}_{x}\mathbf{B}_{y}] \times \text{Molar Mass}$

Example 2: The K_{sp} for lead (II) chloride is 1.6×10^{-5} . Calculate the molar concentrations of each ions and the molar solubility and the solubility of solid lead (II) chloride.

<u>Relative Molar Solubility</u>: - how the molar solubilities of various salts compare.

- the molar solubilities of salts can only be compared directly from K_{sp} values when the salts produce the same number of ions. (In general, the bigger the K_{sp} , the higher the molar solubility.)
- the molar solubilities of salts that produce Different Number of Ions CANNOT be compared

directly from K_{sp} . They must be calculated individually before comparison can be made.

Unit 6: Acids-Bases and Solubility Equilibrium

Example 3: Compare the molar solubilities of CaCO₃, BaCO₃ and SrCO₃ with the K_{sp} values as 8.7×10^{-9} , 1.6×10^{-9} , and 7×10^{-10} respectively.

Since all salts listed here have identical number of ions, the general molar solubility is as follows:

$K_{sp} = [M^{2^+}][CO_3^{2^-}]$ (Let $x =$	$[M^{2^+}] = [CO_3^{2^-}] = So^2$	$(ubility) x = \sqrt{K_{sp}}$
$CaCO_{3(s)} \rightleftharpoons Ca^{2+}_{(aq)} + CO_{3}^{2-}_{(aq)}$	$K_{sp}=8.7\times10^{-9}$	CaCO ₃ Molar Solubility = 9.3×10^{-5} M
$BaCO_{3(s)} \rightleftharpoons Ba^{2+}_{(aq)} + CO_{3}^{2-}_{(aq)}$	$K_{sp}=1.6\times10^{-9}$	BaCO₃ Molar Solubility = 4.0×10^{-5} M
$\operatorname{SrCO}_{3(s)} \rightleftharpoons \operatorname{Sr}^{2+}_{(aq)} + \operatorname{CO}_{3}^{2-}_{(aq)}$	$K_{sp}=7\times 10^{-10}$	SrCO ₃ Molar Solubility = 3×10^{-5} M

<u>The Solubility increases from $SrCO_3 < BaCO_3 < CaCO_3$ </u>. (Since $CaCO_3$ has the largest K_{sp} and all salts have the same number of ions dissociated, $CaCO_3$ has the highest solubility.)

Example 4: Compare the molar solubilities of AgCl, Ag₂CO₃, and Ag₃PO₄ with the K_{sp} values as 1.6×10^{-10} , 8.1×10^{-12} , 1.8×10^{-18} respectively.

Since all salts listed here have different number of ions, the molar solubility of each salt has to be calculated separately.

$$\operatorname{AgCl}_{(s)} \rightleftharpoons \operatorname{Ag}_{(aq)}^{+} + \operatorname{Cl}_{(aq)}^{-}$$

	[AgCl]	$[Ag^+]$	[Cl ⁻]
Initial		0	0
Change		+x	+ <i>x</i>
Equilibrium		x	x

$$K_{sp} = [Ag^{+}][Cl^{-}]$$

$$1.6 \times 10^{-10} = (x)(x)$$

$$1.6 \times 10^{-10} = x^{2}$$

$$x = \sqrt{1.6 \times 10^{-10}}$$

$$x = 1.3 \times 10^{-5} \text{ M}$$
Molar Solubility of AgCl = 1.3 × 10^{-5} M

$Ag_2CO_3(s)$, ``	$2 \operatorname{Ag}^{+}_{(aq)}$	$+ \operatorname{CO_3}^{2-}_{(aq)}$	
$[Ag_2CO_3]$		$[Ag^+]$	$[CO_3^{2-}]$	
		0	0	

	$[Ag_2CO_3]$	[Ag ⁺]	$[CO_3^{2^-}]$
Initial		0	0
Change		+2x	+ <i>x</i>
Equilibrium		2x	x

$$K_{sp} = [Ag^{+}]^{2} [CO_{3}^{2-}]$$

8.1 × 10⁻¹² = (2x)²(x)
8.1 × 10⁻¹² = 4x³
$$x = \sqrt[3]{\left(\frac{8.1 \times 10^{-12}}{4}\right)} = 1.3 \times 10^{-4} M$$

Molar Solubility of $Ag_2CO_3 = 1.3 \times 10^{-4} M$

	$Ag_3PO_4(s) \Rightarrow 3 Ag_{(aq)} + PO_4(aq)$						
	[Ag ₃ PO ₄]		$[Ag^+]$	[C ⁻]			
Initial			0	0			
Change			+3x	+ <i>x</i>			
Equilibrium			3x	x			

$$K_{sp} = [Ag^{+}]^{3}[PO_{4}]^{3-}]$$

$$1.8 \times 10^{-18} = (3x)^{3}(x)$$

$$1.8 \times 10^{-18} = 27x^{4}$$

$$x = \sqrt[4]{\left(\frac{1.8 \times 10^{-18}}{27}\right)} = 1.6 \times 10^{-5} \text{ M}$$

Molar Solubility of $Ag_3PO_4 = 1.6 \times 10^{-5} M$

The Molar Solubility increases from <u>AgCl < Ag₃PO₄ < Ag₂CO₃</u>. Again we can see here because these salts do not dissociate the same number of ions, we cannot compare their solubilities directly from their K_{sp} values.

16.7: Separation of Ions by Fractional Precipitation

<u>Ion Product</u> (*Q*): - similar to reaction quotient, its measures the initial ion concentrations and compares it with K_{sp} .

$Q = [\mathbf{A}^{y^+}]_0^x [\mathbf{B}^{x^-}]_0^y$

- a. When $Q > K_{sp}$, the system will shifts to the solid salt (reactant). In this condition, <u>O indicates that</u> there are too much ions (products). Therefore, the system has to Shift back to the Left and Precipitation occurs.
- b. When $Q < K_{sp}$, the system will shifts to the ions (product). In this condition, <u>Q</u> indicates that there are too little ions (products). Therefore, the system has to <u>Shift to the Right and there will be NO</u> Precipitation.

Calculations involving Ion Product and Final Ion Concentrations:

- 1. Determine the <u>Initial Concentrations</u> of the ions that will likely form a precipitate. (Remember to divide the moles by the total volume.)
- 2. Calculate the **Ion product**.
- 3. <u>Compare it to the K_{sp} value</u> of the solid and decide whether precipitation will form.
- 4. If precipitation occurs $(Q > K_{sp})$, then <u>write the net ionic equation for the precipitation</u>.
- 5. <u>Using regular stoichiometry</u>, run the reaction to completion and <u>determine the concentration of the</u> <u>excess ion</u>.
- 6. Redo the equilibrium for dissolving. Using K_{sp} and the excess ion concentration as initial concentration to find the <u>final concentrations of both ions</u>.
- **Example 1**: 200 mL of 0.0500 M of calcium chloride is reacted with 150 mL of 0.0600 M of ammonium phosphate. Determine whether $Ca_3(PO_4)_2$ will precipitate and calculate the concentrations of Ca^{2+} and PO_4^{3-} in the final solution. The K_{sp} value of $Ca_3(PO_4)_2$ is 1.3×10^{-32} .

Both CaCl₂ and (NH₄)₃PO₄ dissociates completely in water.

 $\begin{array}{ccc} \text{CaCl}_{2\,(aq)} & \rightarrow & \text{Ca}^{2^{+}}_{(aq)} & + & 2 \text{ Cl}^{-}_{(aq)} \\ n \text{ cacl}_{2} = (0.0500 \text{ mol/} \pm)(200 \text{ m} \pm) & n \text{ ca}^{2^{+}} = 10.0 \text{ mmol} \\ n \text{ cacl}_{2} = 10.0 \text{ mmol} & [\text{Ca}^{2^{+}}]_{0} = \frac{10.0 \text{ mmol}}{350 \text{ mL}} = 0.0285714286 \text{ M} \\ n \text{ cacl}_{2} = 10.0 \text{ mmol} & [\text{Ca}^{2^{+}}]_{0} = \frac{10.0 \text{ mmol}}{350 \text{ mL}} = 0.0285714286 \text{ M} \\ n \text{ (NH}_{4})_{3} \text{PO}_{4} = (0.0600 \text{ mol/} \pm)(150 \text{ m} \pm) & n \text{ Po}_{4}^{3^{-}} = 9.00 \text{ mmol} \\ n \text{ (NH}_{4})_{3} \text{PO}_{4} = 9.00 \text{ mmol} & [\text{PO}_{4}^{3^{-}}]_{0} = \frac{9.00 \text{ mmol}}{350 \text{ mL}} = 0.0257142857 \text{ M} \\ \text{Ca}_{3}(\text{PO}_{4})_{2\,(s)} \neq 3 \text{ Ca}^{2^{+}}_{(aq)} + 2 \text{ PO}_{4}^{3^{-}}_{(aq)} & K_{sp} = 1.3 \times 10^{-32} \\ \text{Calculating Ion Product:} & Q = [\text{Ca}^{2^{+}}]_{0}^{3} [\text{PO}_{4}^{3^{-}}]_{0}^{2} = (0.0285714286)^{3}(0.0257142857)^{2} \\ Q = 1.5 \times 10^{-8} \\ \hline Q (1.5 \times 10^{-8}) > K_{sp} (1.3 \times 10^{-32}) \text{ Precipitation Occurs} \\ \end{array}$

Unit 6: Acids-Bases and Solubility Equilibrium

Running the precipitation reaction to completion and using regular stoichiometry,

$$3 \text{ Ca}^{2+}_{(aq)} + 2 \text{ PO}_{4}^{-}_{(aq)} \rightarrow \text{ Ca}_{3}(\text{PO}_{4})_{2 (s)}$$

$$\boxed{n \text{ of } \text{ Ca}^{2+} \text{ n of } \text{ PO}_{4}^{3-}}_{\text{Before}} = 10.0 \text{ mmol} (\text{LR}) 9.00 \text{ mmol}$$

$$\boxed{\text{Change} -10.00 \text{ mmol} -\left(\frac{2}{3}\right)(10.0 \text{ mmol})}_{4 \text{ fter}} = 0 \text{ mmol} 2.33333333 \text{ mmol}} \text{ New } [\text{PO}_{4}^{3-}]_{0} = \frac{2.33333333 \text{ mmo}}{350 \text{ mL}}$$

$$\boxed{\text{New } [\text{PO}_{4}^{3-}]_{0}} = 0.019047619 \text{ M}}$$

Finally, using K_{sp} and the new $[PO_4^{3-}]_0$,

 $[Ca^{2+}] = 3.3 \times 10^{-10} M$

	$Ca_{3}(PO_{4})_{2(s)} \Rightarrow 3 Ca^{2+}_{(aq)} + 2 PO_{4}^{3-}_{(aq)}$					
	$[Ca_3(PO_4)_2]$		$[Ca^{2+}]$	$[PO_4^{3-}]$		
Initial			0	0.019047619 M		
Change			+3x	+2x		
Equilibrium			3x	0.019047619 + 2x		

$$K_{sp} = [Ca^{2+}]^{3} [PO_{4}^{3-}]^{2}$$

$$1.3 \times 10^{-32} = (3x)^{3} (0.019047619 + 2x)^{2}$$

$$1.3 \times 10^{-32} \approx (3x)^{3} (0.019047619)^{2} \checkmark$$

$$x^{3} \approx \frac{1.3 \times 10^{-32}}{(3)^{3} (0.019047619)^{2}}$$

$$x \approx \sqrt[3]{\frac{1.3 \times 10^{-32}}{(3)^{3} (0.019047619)^{2}}} \approx 1.0989 \times 10^{-10} \text{ M}$$

$$[Ca^{2+}] = 3(1.0989 \times 10^{-10} \text{ M})$$

$$[PO]$$

CAN use Approximation:

$$\frac{\left[\text{PO}_{4}^{3-}\right]_{0}^{2}}{K_{sp}} = \frac{\left(0.019047619\,\text{M}\right)^{2}}{1.3\times10^{-32}}$$
$$= 2.8\times10^{28} >> 1000$$

Because in the K_{sp} expression, PO₄³⁻ is squared, the rule of thumb must reflect this operation.

-Use 0.019047619 in the denominator, because (0.019047619 + 2x) ≈ 0.019047619 [2x is so small compared to 0.019047619 M].

$$[PO_4^{3-}] = 0.019047619 \text{ M} + 2(1.0989 \times 10^{-10} \text{ M})$$

 $[PO_4^{3-}] = 0.019 \text{ M}$

-10

<u>Assignment</u> 16.6 pg. 741–744 #39 to 54, 92, 94, 99, 109, 112, 113, 116 16.7 pg. 742–744 #55, 56, 93, 110

16.8: Common Ion Effect and Solubility

<u>Common-Ion Effect and Solubility</u>: - when a solution containing a common ion of a salt is used as a solvent, the <u>solubility of the salt will lower</u> as a result. - set up equilibrium ICE Box to assist in calculation.

Example 1: A 0.0150 M of KBr_(*aq*) is used as a solvent for solid PbBr₂. Calculate the final concentrations for both ions and the molar solubility of PbBr_{2 (s)} given that K_{sp} for PbBr₂ is 4.6×10^{-6} .

Note: If there was no common ion, the solubility of PbBr₂ would be 0.010 M. Hence, <u>with the presence</u> <u>of a common ion, the solubility of a salt is lowered</u>.

Example 2: Determine the final concentrations for both ions of $Cu(OH)_{2(s)}$ in neutral water given that K_{sp} for $Cu(OH)_2$ is 2.2×10^{-20} .

We have to consider the [OH⁻] in water.

	$\operatorname{Cu(OH)}_{2(s)} \rightleftharpoons \operatorname{Cu}^{2+}_{(aq)} + 2 \operatorname{OH}^{-}_{(aq)}$					
	[Cu(OH) ₂]		[Cu ²⁺]	[OH ⁻]		
Initial			0	$1 \times 10^{-7} \mathrm{M}$		
Change			+x	+2x		
Equilibrium			x	$(1 \times 10^{-7}) + 2x$		

$$K_{sp} = [Cu^{2+}][OH^{-}]^{2}$$

$$2.2 \times 10^{-20} = (x)(1 \times 10^{-7} + 2x)^{2}$$

$$2.2 \times 10^{-20} \approx (x)(1 \times 10^{-7})^{2}$$

$$x \approx 2.2 \times 10^{-6} \text{ M}$$

$$[OH^{-}] = 1 \times 10^{-7} \text{ M} + 2(2.2 \times 10^{-6} \text{ M}) \approx 1.0 \times 10^{-7} \text{ M}$$

$$[Cu^{2+}] = 2.2 \times 10^{-6} \text{ M}; [OH^{-}] = 1 \times 10^{-7} \text{ M}$$

H₂O_(*l*) → H⁺_(aq) + OH⁻_(aq) 1 × 10⁻⁷ M (at pH = 7) CAN use Approximation:

$$\frac{\left[\text{OH}^{-}\right]_{0}^{2}}{K_{sp}} = \frac{\left(1 \times 10^{-7} \text{ M}\right)^{2}}{2.2 \times 10^{-20}} = 4.5 \times 10^{5} > 1000$$

Because in the K_{sp} expression, OH⁻ is squared, the rule of thumb must reflect this operation.

Use 1×10^{-7} as [OH⁻], because $(1 \times 10^{-7} + 2x) \approx 1 \times 10^{-7}$ [x is so small compared to 1×10^{-7} M].

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 351.

<u>Selective Precipitation</u>: - by using a chemical reagent with an anion that will form precipitates with metal ions in a solution, the salts of each of these metal ions can be separated because one will precipitate first.

- when two or more precipitates is likely to form, <u>the solid with the lowest anion</u> <u>concentration at its K_{sp} will precipitate first.</u>
- recall that we can only use K_{sp} to compare solubilities <u>if and only if</u> the solids can produce the same number of ions. Otherwise, we have to calculate the anion concentration needed of each salt individually.

Example 3: A chemical reagent consisting of $SO_4^{2^-}_{(aq)}$ is slowly poured into a solution containing 3.00×10^{-3} mol/L of Ag⁺_(aq) and 1.50×10^{-4} mol/L of Pb²⁺_(aq). The K_{sp} values of Ag₂SO₄ and PbSO₄ are 1.2×10^{-5} and 1.3×10^{-8} respectively. Determine which of the above solids will precipitate first by calculating the [SO₄²⁻] require for each solid.

$$Ag_{2}SO_{4(s)} \approx 2 Ag^{+}_{(aq)} + SO_{4}^{2-}_{(aq)} PbSO_{4(s)} \approx Pb^{2+}_{(aq)} + SO_{4}^{2-}_{(aq)}$$

$$K_{sp} = [Ag^{+}]^{2}[SO_{4}^{2-}]$$

$$1.2 \times 10^{-5} = (3.00 \times 10^{-3})^{2}[SO_{4}^{2-}]$$

$$[SO_{4}^{2-}] = \frac{1.2 \times 10^{-5}}{(3.00 \times 10^{-3})^{2}} [SO_{4}^{2-}]$$

$$[SO_{4}^{2-}] = \frac{1.3 \times 10^{-8}}{1.50 \times 10^{-4}}$$

 $[SO_4^{2^-}] = 1.3$ M is needed for $Ag_2SO_{4(s)}$ to form $[SO_4^{2^-}] = 8.7 \times 10^{-5}$ M is needed for PbSO_{4(s)} to form

Since $[SO_4^{2^-}]$ is less for PbSO_{4 (s)} to form, lead (II) sulfate will precipitate first as $SO_4^{2^-}(aq)$ is slowly added to the solution. PbSO₄ can then be separated leaving the $Ag^+(aq)$ in the filtrate.

<u>Assignment</u> 16.8 pg. 742–744 #57 to 62, 97, 111

16.9: pH and Solubility

- **<u>pH</u> and Solubility**: when salts containing effective bases of weak acids (OH⁻, S²⁻, CO₃²⁻, CH₃COO⁻, and CrO_4^{2-}) are dissolved in acids, their solubilities increases.
 - conversely, if these effective bases salts are dissolved in bases, their solubilities decreases.

Example: Calcium carbonate is dissolved in acidic solution.

$$CaCO_{3(s)} \Rightarrow Ca^{2+}_{(aq)} + CO_{3}^{2-}_{(aq)} \downarrow$$

(Because H₃O⁺_(aq) + CO₃²⁻_(aq) \rightarrow HCO₃⁻_(aq) + H₂O_(l))

Example: Silver hydroxide is dissolved in basic solution.

 $(Solubility \downarrow)$ AgOH_(s) \Rightarrow Ag⁺_(aq) + OH⁻_(aq) (Because solvent is already basic)

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 352.

Example 1: Determine the minimum concentration of ammonia needed to start the precipitation of $Mg(OH)_{2(s)}$ from a 0.00450 M of $MgCl_{2(aq)}$ solution. (*K_b* of $NH_{3(aq)} = 1.79 \times 10^{-5}$ and *K_{sp}* of

 $Mg(OH)_{2(s)} = 1.2 \times 10^{-11}$

MgCl₂ is very soluble and completely dissociates in water.

$$\begin{array}{rcl} \mathrm{MgCl}_{2\,(s)} & \rightarrow & \mathrm{Mg}^{2+}_{(aq)} & + & 2 \ \mathrm{Cl}^{-}_{(aq)} \\ 0.00450 \ \mathrm{M} & & 0.00450 \ \mathrm{M} \end{array}$$

 $NH_{3(aq)}$ is a weak base and provides the $OH_{(aq)}^{-}$ (after the Br<u>ø</u>nsted-Lowry dissociation) for the formation of Mg(OH)_{2(s)}.

$$\mathbf{NH}_{3 (aq)} + \mathrm{H}_{2}\mathrm{O}_{(l)} \rightleftharpoons \mathrm{NH}_{4 (aq)}^{+} + \mathbf{OH}_{(aq)}^{-} \qquad K_{b} = 1.79 \times 10^{-5}$$
$$\mathbf{Mg}^{2+}_{(aq)} + 2 \mathbf{OH}_{(aq)}^{-} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2 (s)}$$

After Mg(OH)_{2 (s)} precipitated, some of it would dissociate back into ions according to K_{sp} .

 $Mg(OH)_{2(s)} \Rightarrow Mg^{2+}_{(aq)} + 2 OH^{-}_{(aq)} \qquad K_{sp} = 1.2 \times 10^{-11}$

Hence, we need to calculate the [OH⁻] first from the K_{sp} of Mg(OH)_{2 (s)}. Then, we can use this [OH⁻] to find the original [NH₃] required to initiate this precipitation.

$$K_{sp} = [Mg^{2+}][OH^{-}]^{2}$$

1.2 × 10⁻¹¹ = (0.00450)[OH^{-}]^{2}
[OH^{-}] = $\sqrt{\frac{1.2 \times 10^{-11}}{(0.00450)}}$ = 5.163977795 × 10⁻⁵ M

$[OH^{-}] = 5.16 \times 10^{-5} \text{ M}$ is needed for Mg(OH)_{2 (s)} to form.

Next, we can work backwards using the ICE box and K_b to find the [NH₃]₀.

$$\frac{NH_{3}(aq) + H_{2}O_{(l)} = NH_{4}^{+}(aq) + OH_{(aq)}^{-}}{[NH_{3}]} = \frac{[NH_{4}^{+}]}{[OH_{-}]} = \frac{[OH_{-}^{-}]}{[OH_{-}]}$$
Initial x M 0 M 0 M 0 M
Change -5.163977795 × 10⁻⁵ M +5.163977795 × 10⁻⁵ M +5.163977795 × 10⁻⁵ M
Equilibrium (x - 5.163977795 × 10⁻⁵) 5.163977795 × 10⁻⁵ M 5.163977795 × 10⁻⁵ M

$$K_{b} = \frac{[NH_{4}^{+}]OH_{-}^{-}]}{[NH_{3}]} 1.79 \times 10^{-5} = \frac{(5.163977795 \times 10^{-5})^{2}}{(x - 5.163977795 \times 10^{-5})}$$
1.79 × 10⁻⁵ (x - 5.163977795 × 10⁻⁵) = 2.6666666667 × 10⁻⁹
1.79 × 10⁻⁵ x - 9.24352025 × 10⁻¹⁰ = 2.666666667 × 10⁻⁹
1.79 × 10⁻⁵ x - 9.24352025 × 10⁻¹⁰ = 2.666666667 × 10⁻⁹
1.79 × 10⁻⁵ x = 2.666666667 × 10⁻⁹
1.79 × 10⁻⁵ x = 2.0118692 × 10⁻⁹
1.79 × 10⁻⁵ x = 2.006155694 × 10⁻⁴ M
Minimum [NH_{3}]_{0} = x = 2.01 × 10⁻⁴ mol/L

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 353.

16.10: Complex Ion Equilibria and Solubility

<u>Complex Ion</u>: - metal ion that is surrounding by Lewis Base (species with electron lone-pairs to donate). - the resulting bonds between the metal ion and these Lewis Bases are called <u>ligands</u>.

<u>Coordination Number</u>: - the number of ligands that is attached to the metal ion.

Coordination Number	Metal Ions	Complex Ion Geometry
2	Cu^+ , Ag^+ , and Au^+	Linear
4	$Al^{3+}, Cu^+, Au^+, Mn^{2+}, Co^{2+}, Ni^{2+}, Cu^{2+}, Zn^{2+} and Au^{3+}$	Tetrahedral or Square Planar
6	Al ³⁺ , Mn ²⁺ , Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ , Zn ²⁺ , Sc ³⁺ , Cr ³⁺ , Pt ³⁺ and Co ³⁺	Octahedral

	Metal Ions	and	Coordination	Numbers
--	------------	-----	--------------	---------

Example 1: Write the net ionic equations of the following.

a. A silver nitrate solution is mixed with an ammonia solution.

Complete Dissociation of Silver Nitrate: $AgNO_{3(s)} \rightarrow Ag^{+}_{(aq)} + NO_{3^{-}(aq)}$ Net Ionic Equation: $Ag^{+}_{(aq)} + 2 NH_{3(aq)} \rightarrow Ag(NH_{3})_{2}^{+}$ (Ag⁺ has coordinate number 2)

b. A cobalt (II) chloride solution is mixed with concentrated hydrochloric acid.

Complete Dissociation of Cobalt (II) Chloride: $\operatorname{CoCl}_{2(s)} \rightarrow \operatorname{Co}^{2+}_{(aq)} + 2 \operatorname{Cl}^{-}_{(aq)}$ Hydrochloric Acid is a Strong Acid: $\operatorname{HCl}_{(aq)} \rightarrow \operatorname{H}^{+}_{(aq)} + \operatorname{Cl}^{-}_{(aq)}$ Net Ionic Equation(s): $(\operatorname{Co}^{2+}$ has coordinate numbers 4 or 6) $\operatorname{Co}^{2+}_{(aq)} + 4 \operatorname{Cl}^{-}_{(aq)}$ (or 6 $\operatorname{Cl}^{-}_{(aq)}$) $\rightarrow \operatorname{CoCl}_{4}^{2-}$ (or $\operatorname{CoCl}_{6}^{4-}$) $\operatorname{Co}^{2+}_{(aq)} + 4 \operatorname{H}_{2}O_{(l)}$ (or 6 $\operatorname{H}_{2}O_{(l)}$) $\rightarrow \operatorname{Co(H}_{2}O)_{4}^{2+}$ (or $\operatorname{Co(H}_{2}O)_{6}^{2+}$)

Naming Complex Ions: - when naming a complex ion, first give the name(s) of the ligand(s), in alphabetical order, followed by the name of the metal.

Ligand (Lewis Base)	Name of Ligands	Metal Ions	Metal Name for Complex <u>Anion</u>
Water (H ₂ O)	Aqua	Iron (Fe)	Ferrate
Ammonia (NH ₃)	Ammine	Copper (Cu)	Cuprate
Methylamine (CH ₃ NH ₂)	Methylamine	Lead (Pb)	Plumbate
Carbon Monoxide (CO)	Carbonyl	Silver (Ag)	Argentate
Nitrogen Monoxide (NO)	Nitrosyl	Gold (Au)	Aurate
Hydroxide (OH ⁻)	Hydroxo	Tin (Sn)	Stannate
Cyanide (CN ⁻)	Cyano	Platinum (Pt)	Platinate
Thiocyanide (SCN ⁻)	Thiocyano	Cobalt (Co)	Cobaltate
Fluoride (F ⁻)	Fluoro	Aluminium (Al)	Aluminiate
Chloride (Cl ⁻)	Chloro	Zinc (Zn)	Zincate
Bromide (Br ⁻)	Bromo	Nickel (Ni)	Nickelate
Iodide (I ⁻)	Iodo	Chromium (Cr)	Chrominate
Sulfate (SO ₄ ²⁻)	Sulfato	Scandium (Sc)	Scandiate
Sulfite (SO ₃ ²⁻)	Sulfito	Cadmium (Cd)	Cadminate
Nitrate (NO ₃ ⁻)	Nitrato		
Nitrite (NO ₂ ⁻)	Nitrito		

Special Notes on Naming Complex Ions:

- If a ligand is an anion whose name ends in *-ite* or *-ate*, the <u>final e</u> is changed to <u>o</u>.
 (Example: change sulf<u>ate</u> to sulfat<u>o</u> and change nitr<u>ite</u> to nitrit<u>o</u>)
- If the ligand is an anion whose name ends in *-ide*, the *entire suffix ending* is changed to <u>o</u>.
 (Example. change chlor<u>ide</u> to chlor<u>o</u> and cyan<u>ide</u> to cyan<u>o</u>)
- If the ligand is a neutral molecule, its common name is used. The important exceptions to this, however, are that <u>water (H_2O) is called aqua</u>, <u>ammonia (NH_3) is called ammine</u>, and <u>carbon mononxide (CO) is</u> <u>called carbonyl</u>.
- When there is *more than one of a particular ligand*, the number of ligands is designated by the appropriate *Greek prefix: di-, tri-, tetra-, penta-, hexa-, hepta-, etc*.
- If the *complex ion is an anion*, the suffix *-ate* is added to the metal name. The Latin name is often used for the metal in this case. For example, ferro rather than iron and cupro rather than copper.
- Following the name of the metal, the *oxidation number or original charge of the metal* is given using *<u>Roman Numerals</u>*.

Examples: $Fe(CN)_6^{3-}$ - hexacyanoferrate (III) Al(H₂O)₆³⁺ - hexaaquaaluminium (III) Pt[(SO₄)₅Cl]³⁺ - chloropentasulfatoplatinum (III) $CoCl_4^{2-}$ - tetrachlorocobaltate (II) Ni(SCN)₆⁴⁻ - hexathiocyanonickelate (II) Zn[(NO₂)₂(H₂O)₂] diaquadinitritozincate (II)

Formation Constants (*K*): - the equilibrium constant of the formation of complex ions from the metal ions and their Lewis bases.

- also refer to as **<u>Stability Constants</u>**.
- for a particular coordination number of a complex ion, there are equal number of formation constants.

- the values of most formation constants are relatively large ($K_n >> 1$). Therefore, we can <u>assume the formation of complex ions goes to completion</u>.

$$\mathbf{M}^{n+}_{(aq)} + \mathbf{LB}_{(aq)} \rightleftharpoons \mathbf{M}(\mathbf{LB})^{n+}_{(aq)} \qquad K_1 = \begin{bmatrix} \mathbf{M}(\mathbf{LB})^{n+} \\ \mathbf{M}^{n+} \end{bmatrix} \begin{bmatrix} \mathbf{LB} \end{bmatrix}$$
$$\mathbf{M}(\mathbf{LB})^{n+}_{(aq)} + \mathbf{LB}_{(aq)} \rightleftharpoons \mathbf{M}(\mathbf{LB})^{n+}_{2}_{(aq)} \qquad K_2 = \begin{bmatrix} \mathbf{M}(\mathbf{LB})^{n+} \\ \mathbf{M}(\mathbf{LB})^{n+} \end{bmatrix} \begin{bmatrix} \mathbf{M}(\mathbf{LB})^{n+} \\ \mathbf{M}(\mathbf{LB})^{n+} \end{bmatrix}$$

$$\mathbf{M}^{n+}_{(aq)} + 2 \operatorname{LB}_{(aq)} \rightleftharpoons \mathbf{M}(\operatorname{LB})_{2}^{n+}_{(aq)} \qquad K = \frac{\left[\mathbf{M}(\operatorname{LB})_{2}^{n+}\right]}{\left[\mathbf{M}^{n+}\right]\left[\operatorname{LB}\right]^{2}} = K_{1} \times K_{2} = \frac{\left[\mathbf{M}(\operatorname{LB})_{2}^{n+}\right]}{\left[\mathbf{M}^{n+}\right]\left[\operatorname{LB}\right]} \times \frac{\left[\mathbf{M}(\operatorname{LB})_{2}^{n+}\right]}{\left[\mathbf{M}(\operatorname{LB})_{2}^{n+}\right]\left[\operatorname{LB}\right]}$$

Overall Formation Constant

 $\mathbf{M}^{n+}_{(aq)} + \mathbf{x} \ \mathbf{LB}_{(aq)} \rightleftharpoons \mathbf{M}(\mathbf{LB})_{x}^{n+}_{(aq)}$ $K = K_{1} \times K_{2} \times K_{3} \times \ldots \times K_{x}$

Unit 6: Acids-Bases and Solubility Equilibrium

Example 2: Write the stepwise formation equilibrium equations for $Fe(SCN)_{2}^{+}{}_{(aq)}$ and calculate its overall formation constant given that $K_1 = 890$ and $K_2 = 2.6$. Determine the final concentrations of Fe^{3+} , $Fe(SCN)^{2+}$, and $Fe(SCN)_{2}^{++}$ when 200 mL of 0.0500 M of $Fe(NO)_{3}{}_{(aq)}$ is reacted with 150 mL of 0.600 M of NaSCN ${}_{(aq)}$.

Both Fe(NO)₃ and NaSCN dissociates completely in water.

$\operatorname{Fe}(\operatorname{NO}_3)_{3(aq)} \to \operatorname{Fe}^{3+}_{(aq)} + 3 \operatorname{NO}_3^{-}_{(aq)}$	NaSCN $_{(aq)} \rightarrow$	$Na^+_{(aq)} + SCN^{(aq)}$
$Fe^{3+}_{(aq)} + SCN^{-}_{(aq)} \Rightarrow 1$	Fe(SCN) ²⁺ (aq)	$K_1 = 890$
$\underline{\text{Fe}(\text{SCN})^{2+}}_{(aq)} + \underline{\text{SCN}}_{(aq)} \rightleftharpoons$	Fe(SCN)2 ⁺ (aq)	<u>$K_2 = 2.6$</u>
n ^{3†}		$K = K_1 \times K_2 = 890 \times 2.6$
$\operatorname{Fe}^{+}_{(aq)} + 2 \operatorname{SCN}_{(aq)} \rightleftharpoons$	$Fe(SCN)_2(aq)$	K = 2314
$\operatorname{Fe}(\operatorname{NO}_3)_{3 \ (aq)}$	\rightarrow Fe ³⁺ (aq)	+ $3 NO_3^{-}(aq)$
$n \operatorname{Fe(NO_3)_3} = (0.0500 \text{ mol/} \pm)(200 \text{ m} \pm)$	$n \mathrm{Fe}^{3+} = 10.0$	mmol
$n_{\rm Fe(NO_3)_3} = 10.0 \rm mmol$	$[\mathrm{Fe}^{3+}]_0 = \frac{10.0}{350}$	$\frac{111101}{0 \text{ mL}} = 0.0285714286 \text{ M}$
NaSCN (aa)	\rightarrow Na ⁺ _(ad)	+ $SCN^{-}(aa)$
$n_{\text{NaSCN}} = (0.600 \text{ mol/L})(150 \text{ mL})$	($n \operatorname{scn}^{-} = 90.0 \operatorname{mmol}^{(\mathrm{eq})}$
$n_{\text{NaSCN}} = 90.0 \text{ mmol}$	[SCN [−]]₀	$= \frac{90.0 \text{ mmol}}{350 \text{ mL}} = 0.257142857 \text{ M}$

	$\mathbf{Fe}^{3+}_{(aq)} +$	- 2 SCN ⁻ (aq) -	\rightarrow Fe(SCN) ₂ ⁺ (aq)
	[Fe ³⁺]	[SCN ⁻]	$[Fe(SCN)_2^+]$
Before	0.0285714286 M (LR)	0.257142857 M	0
Change	– 0 0285714286 M	0.257142857 M	+ 0.0285714286 M
Change	0.0203714200 101	-2(0.0285714286 M)	0.0200711200101
After	≈ 0 M	≈ 0.200 M	≈ 0.0285714286 M

Using the equilibrium expression for the second dissociation and K_2 , we can find [Fe(SCN)²⁺].

$$K_{2} = \frac{\left[Fe(SCN)_{2}^{+}\right]}{\left[Fe(SCN)^{2+}\right]SCN^{-}}$$

$$2.6 = \frac{(0.0285714286)}{\left[Fe(SCN)^{2+}\right](0.200)}$$

$$[Fe(SCN)^{2+}] = \frac{(0.0285714286)}{(2.6)(0.200)} = 0.054945055 \text{ M}$$

$$[Fe(SCN)^{2+}] = 0.055 \text{ M}$$

$$[Fe(SCN)_{2}^{+}] = 0.0286 \text{ M}$$

Chemistry AP

<u>Complex Ion and Solubility</u>: - solubility of insoluble salts can be <u>"re-dissolved"</u> when mixed with sufficient Lewis base.

- **Example 3**: A NaOH solution is added to Ni(NO₃)_{2 (*aq*)} and a precipitate forms ($K_{sp} = 1.6 \times 10^{-16}$). Addition of 6.00 M of NH_{3 (*aq*)} re-dissolved the precipitate into a complex ion with 6 as its coordination number.
 - a. Identify the precipitate and the resulting complex ion.
 - b. Calculate the solubility of the precipitate in $NH_{3(aq)}$ if the overall formation constant is 5.5×10^8 . Neglect the volume of the NaOH and Ni(NO₃)₂ solutions.
- a. Both Ni(NO₃)₂ and NaOH dissociates completely in water.

$$Ni(NO_3)_{2(aq)} \rightarrow Ni^{2+}_{(aq)} + 2 NO_3^{-}_{(aq)} NaOH_{(aq)} \rightarrow Na^{+}_{(aq)} + OH^{-}_{(aq)}$$

$$Ni^{2+}_{(aq)} + 2 OH^{-}_{(aq)} \rightarrow Ni(OH)_{2(s)}$$
Precipitate is Ni(OH)_2

b. We need to calculate the overall formation constant for the complex ion from $Ni(OH)_{2(s)}$.

Unit 6: Acids-Bases and Solubility Equilibrium

16.11: Application of the Solubility Product to Qualitative Analysis

- <u>Centrifuge</u>: a device that speeds up the precipitation process by the use of centrifugal force (spinning the test tubes really fast).
- <u>Supernatant</u>: the liquid that remained after the precipitate is collected at the bottom of a test tube from the centrifuge process.

test tube wells

A typical laboratory centrifuge. Test tubes are placed inside the wells and the spinning will pull the precipitate down to the bottom.

- <u>Flame Test</u>: a test performed on a salt to detect the identity of a metal ion by the colour of the flame emitted as it is placed over a lighted Bunsen-burner.
 - the principle of a metal ion emitting a certain visible colour is due to the electrons are excited to jump into higher orbitals as it is placed in a flame. As they come down to the lower orbital, a unique frequency is given in the visible spectrum producing a specific colour.

From left to right: LiCl, NaCl, CuCl₂, and SrCl₂ produce different colors during the flame tests

<u>**Qualitative Analysis**</u>: - testing for the identities of metal ions by using selective precipitation or flame tests. - usually both tests are used to identify the exact metal ions in the solution.

Developing a Qualitative Analysis Scheme for Cations:

- 1. <u>HCl is used to precipitate with Pb²⁺, Hg⁺, Ag⁺, Tl⁺, and Cu⁺</u> because their K_{sp} with Cl⁻ are small.
- 2. <u>Sulfide ion (S²⁻) in acidic solution such as H₂S_(aq) is commonly used to precipitate out the most</u> insoluble salts such as (HgS, CuS, CdS, Bi₂S₃, As₂S₃, Sb₂S₃, and SnS₂). At low pH (high [H⁺]), the concentration of S²⁻ is small. (H₂S_(aq) \rightleftharpoons H⁺_(aq) + HS⁻_(aq) and HS⁻_(aq) \rightleftharpoons H⁺_(aq) + S²⁻_(aq)) Therefore, metalsulfide salts with higher K_{sp} values will remain in the solution as metal ions.

3. Increasing the pH by adding NaOH will make the metal-sulfide salts with higher K_{sp} values to precipitate out (Mn²⁺, Fe²⁺, Ni²⁺, Co²⁺, Zn²⁺, Fe³⁺, Al³⁺, and Cr³⁺). This is because a decrease in the [H⁺] will drive both acid dissociation reactions forward, increasing the [S²⁻].

4. Finally, CO₃²⁻ is added to precipitate the alkaline-earth ions such as Mg²⁺, Ca²⁺, Sr²⁺ and Ba²⁺.

5. <u>At each stage of the analysis, the residual (precipitate) can be filtered out and be subject to a</u> <u>flame test</u> for more accurate identification. Since alkali-metal ions are soluble with all anions, we will run a flame test on the filtrate or supernatant from step 4 to determine the identity of the remaining metal ions.

Group	Solution	Precipitating	Solids Proginitated	Metal Ions	Flame Tests
1	Unknown	0.1 M HCl	PbCl ₂ , Hg ₂ Cl ₂ , AgCl, TlCl, and CuCl	$\begin{array}{c} \text{Pb}^{2+}, \text{Hg}^{+}, \\ \text{Ag}^{+}, \text{Tl}^{+}, \\ \text{and } \text{Cu}^{+} \end{array}$	Pb^{2+} - light blue; Hg^+ - white; Ag ⁺ - gray; Tl^+ - green; Cu ⁺ - blue green
2	Filtrate or Supernatant from Group 1	H ₂ S at pH 1	$\begin{array}{c} HgS, CuS,\\ CdS, Bi_2S_3,\\ As_2S_3, Sb_2S_3,\\ SnS_2\end{array}$	Hg ²⁺ , Cu ²⁺ , Cd ²⁺ , Bi ³⁺ , As ³⁺ , Sb ³⁺ , and Sn ⁴⁺	Hg ²⁺ - white; Cu ²⁺ - blue green Cd ²⁺ - colourless; As ³⁺ - light blue; Bi ³⁺ - yellow brownish; Sb ³⁺ - green; Sn ⁴⁺ - colourless
3	Filtrate or Supernatant from Group 2	NaOH at pH 10	MnS, FeS, NiS, CoS, ZnS, Fe(OH) ₃ , Al(OH) ₃ , Cr(OH) ₃	$\begin{array}{c} Mn^{2+}, Fe^{2+}, \\ Ni^{2+}, Co^{2+}, \\ Zn^{2+}, Fe^{3+}, \\ Al^{3+}, and \\ Cr^{3+} \end{array}$	Mn^{2+} - violet Fe ²⁺ & Fe ³⁺ - yellow brownish red Ni ²⁺ - brown; Co ²⁺ - blue Zn ²⁺ - whitish green; Al ³⁺ - colourless; Cr ³⁺ - green
4	Filtrate or Supernatant from Group 3	Na ₂ CO ₃ at pH 10	MgCO ₃ , CaCO ₃ , SrCO ₃ , BaCO ₃	$Mg^{2+}, Ca^{2+}, Sr^{2+}$ and Ba^{2+}	Mg^{2+} - white; Ca^{2+} - yellowish red Sr ²⁺ - scarlet red; Ba ²⁺ - yellow green
5	Filtrate or Supernatant from Group 4	None	Soluble Ions	$\begin{array}{c} \text{Li, Na}^+,\\ \text{K}^+, \text{ and}\\ \text{NH_4}^+ \end{array}$	Li^+ - red; Na ⁺ - yellow; K ⁺ - violet; NH ₄ ⁺ - green

A Common Qualitative Analysis Scheme for most Metal Ions

<u>Assignment</u> 16.11 pg. 743 #77, 79 to 82