A Square and Things

Quadratic Equations

bic around the vear 825. The author, Muhammad Ibn Miisa
Al-Khwarizmi, was probably born in what is now Uzbekistan.
He lived, however, in Baghdad, where the Caliph had established a kind
of academy of science called “The House of Wisdom.” Al-Khwarizmi
was a generalist; he wrote books on geography, astronomy, and math-
ematics. But his book on algebra is one of his most famous.
Al-Khwarizm1’s book starts out with a discussion of quadratic equa-
tions. In fact, he considers a specific problem:

rl ] \he word “algebra” comes from a title of a book written in Ara-

One square, and ten roots of the same, are equal to thirty-
nine dirhems. That is to say, what must be the square
which, when increased by ten of its own roots, amounts to

thirty-nine?

If we call the unknown x, we might call the “square” 2. Now, a
“root of this square” is z, so “ten roots of the-square” is 10x. Using
this notation, the problem translates into solving the equation x? +
10z = 39. But algebraic symbolism had not been invented yet, so all
Al-Khwarizmi could do was to say it in words. In the time-honored
tradition of algebra teachers everywhere, he follows the problem with
a kind of recipe for its solution, again spelled out in words:

The solution is this: you halve the number of the roots,
which in the present instance yields five. This you multiply
by itself; the product is twenty-five. Add this to thirty-nine;
the sum is sixty-four. Now take the root of this, which is
eight, and subtract from it half the number of the roots,
which is five; the remainder is three. This is the root of the
square which vou sought for; the square itself is nine.!

Here’s the computation in our symbols:

r=v52+39-5=v25+39-5=v64—-5=8-5=3.
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It’s not hard o see that this is basically just the quadratic formula
as we now know it. To solve ©° + bxr = ¢, Al-Khwarizmi uses the rule

The biggest difference between this and the modern formula is that
we would consider both the positive and the negative square roots.
But taking the negative square root would give a negative value for z.
Mathematicians at the time didn’t yet believe in negative numbers; the
positive root was the only one they cared about. We also put the “—h"
part at the beginning. But that would again mean a negative number,
s0 he prefers to put it at the end. as a subtraction. (See Sketch 5.)
Finally, he states the equation with the ¢ on the right-hand side, while
we would write it as 22 + bz — ¢ = 0.

If we put the “—b" in front, add & to the root, remember to take into
account the sign of his ¢, and do a little algebra, his formula becomes
ours:

(ot o
b \/(b)z b+ V2 +4e
+ to= XTI

s 2 2

2
{The coefficient @ is missing from this formula because Al-Khwarizmi
was considering a single square; that is, a = 1.)
But he didn't leave it at that. He felt he should explain why his
method worked. Rather than doing this algebraically, as we might
today, he did it with a geometric argument. It went like this:

First, we have “a square and
ten roots.” To picture this,
draw a square whose side we
don’t yet know. If we call the

side x, the area of the square . x? 10z
is 2. To get 10z, we draw a
rectangle with one side equal
to & and one side equal to 10,
as in Display 1. - 10

Display 1

The equation tells us that the area of the whole figure is 39. To solve
the equation, that is, to determine x, we first eut the number of roots
in half. Geometrically, that means we split the rectangle into two

haluoe aach wnth arcas Be ac in Thonlaxr 9
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7 Now we move one of the
half-rectangles to the bottom
of the square, making the fig-
ure in Display 3. The total

T o | area is still 39. But notice
that adding in the little square
missing in the lower right will
make a big square. Since the

- 1b two rectangles have side 5, the
' e area of the little square must
S LI be 25, as shown in Display 4.
z 5 T b
T r? b T a2 %4
] %) 5 ha 25
Display 3 Display 4

When we complete the square by adding in the little square, our
figure becomes a square whose area is 39 + 256 = 64. But this means
that its side is equal to the square root of 64, which is 8. And since the
side of the big square is = + 5, we can conclude that = + 5 = 8. So we
subtract 5 and get z = 3.

Each step in Al-Khwarizmi's rule corresponds to a step in the ge-
ometric version. And the geometric version shows us exactly what
is going on and why it works! As noted before, this version of the
quadratic formula assumes that the leading coefficient is 1. Today, we
write the general quadratic equation as ar® + bx + ¢ = 0, allowing for a
different leading coefficient. Al-Khwarizmi would have dealt with this
simply by dividing through by « and applying his rule.

After AlLKhwarizmi’s time many other mathematicians wrote about
quadratic equations. Their methods and their geometric justifications
became more and more sophisticated. But the basic idea never changed.
In fact. even the example stayed the same. From the 9th century to the
16th century, books on algebra almost always started their discussion
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of quadratic equations by considering “a square and ten roots are equal
to 39.7

Early in the 17th century, mathematicians came up with the idea of
using letters to represent numbers. (See Sketch 8.) Slowly, a convention
developed: Letters from the end of the alphabet would denote urknown
numbers, and letters from the beginning of the alphabet would stand for
known numbers. Finally, Thomas Harriot and René Descartes noticed
that it’s much easier to write all equations as something = (), The main
advantage is that now axz? + bz = ¢ and ax® + ¢ = bz could be seen as
special cases of the general equation az® + bz + ¢ = 0. And the general
solution could now be written as

—b+ Vb - dac

o 2a

That’s what we still do today.
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athematical problems rarely arise in abstract form. The prob-

lem of solving cubic equations (equations of degree three)

grew out of geometric problems first considered by Greek
mathematicians. The original problems may go back as far as 400
B.C., but the complete solution only came some 2000 vears later.

The story begins with a famous geometric question: Given an angle,
is there a way to construct an angle one third as large? To make
sense out of this question, we first need to understand (or decide) what
“construct” means. 1If it means using only a ruler and a compass, the
answer is that it cannot be done. If we allow other tools, it can. Several
constructions were known in Ancient Greece, many of them involving
conic sections such as parabolas and hyperbolas.

Once trigonometry was developed, it became
clear that this problem boils down to solving a
cubic equation, as follows. To find one third of
a given angle #, we can begin by thinking of ¢
as three times the angle we're looking for, which
we'll call a; that is, o = #/3. Now we apply the
formula for the cosine of 3a:

cos(3a) = 4cos®(a) — 3 cos(a).

Since the angle # is known, we also know cos(8); call it a. To construct
/3, we need to construct its cosine. If we let x = cos(#/3), then, using
the formula above with o = /3, we get a = 42”3z, or 42* -3z —a = 0.
Finding » amounts to solving this equation.

When the Arabic mathematicians had begun doing algebra, it was
inevitable that someone would try to apply the new techniques to equa-
tions of degree three. The most famous mathematician to attempt this
was 'Umar Al-Khayammi, known in the West as Omar Khayyam. Al-
Khayammt, who was born in Iran in 1048 and died in 1131, was famous
in his time as a mathematician, scientist, and philosopher. He seems
also to have been a poet, and that is how he is best known today.’

Because the Arabic mathematicians did not use negative numbers
and did not allow zero as a coefficient, Al-Khayammi had to consider

'His most famous poetic work iz the Ruba‘iat, meaning “quatrains,” which was
(very freely] translated in 1859 by Edward FitzGerald as The Rubdiydt of Omar
Khayydm.
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many cases. For him, 2° + ax = b and z°* = az + b were different kinds
of equations. Arabic algebra was expressed entirely in words, so he
described them as “a cube and roots are equal to a number” and “a
cube is equal to roots and a number,” respectively. Considered in this
way, there are fourteen different kinds of eubic equations. For each of
them, Al-Khayammi found a geometric solution: a construction that
vields a line segment whose length satisfies the equation. Most of these
constructions involve intersecting conic sections, and many have side
conditions to guarantee the existence of positive solutions.

Al-Khayammi's work is impressive, but when it comes to determin-
ing a number that solves the equation it is of no help at all, as he
himself acknowledges. That problem was left for others to attack.

Algebra reached Italy in the 13th century. Leonardo of Pisa's Liber
Abbaci discussed both algebra and arithmetic with Hindu-Arabic nu-
merals. In the following centuries, a lively tradition of arithmetic and
algebra teaching developed in Italy. As [talian merchants developed
their businesses, they had more and more need of calculation. The
Italian “abbacists” tried to meet this need by writing books on arith-
metic and algebra. Several of them discussed examples of cubic equa-
tions. In some cases, the examples were chosen so that the equations
could be solved, or they were constructed from their solutions. In other
cases, the authors presented incorrect ways to solve them. None had a
complete solution of the general problem.

There was not much real progress on the problem until the work
of Scipione del Ferro (1465-1526) and Niccold Fontana (1500-1557),
known as Tartaglia (“the Stammerer”). Both discovered how to solve
certain cubics, and both kept their solutions secret. At this time, Italian
scholars were mostly supported by rich patrons and had to prove their
talent by defeating other scholars in public competitions. Knowing how
to solve cubic equations allowed them to challenge others with problems
that they knew the others could not solve. Thus, this competition
system encouraged people to keep secrets.

In 1535 Tartaglia bragged that he could solve cubic equations, but
he wouldn't tell anyone how he did it. Scipione del Ferro, who was dead
by this time, had passed his own secret on to his student Antonio Maria
Fiore. When Fiore heard of Tartaglia’s claim, he challenged him to a
competition. It turned out that del Ferro knew how to solve equations
of the form =* + ¢z = d, and that Tartaglia had discovered how to
solve 2% + bx? = d. When the time for the contest came, Tartaglia
presented Fiore with a range of questions on several different parts
of mathematics, but each and every one of Fiore’s questions boiled
down to a cubic of the kind he could solve. Faced with this, Tartaglia
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managed to find a solution for this kind of equation, too, and won
the contest handily when it turned out that Fiore’s knowledge didn’t
extend much beyond cubic equations.

News of Tartaglia’s victory eventually reached Girolamo Cardano
(1501-1576), one of the most interesting figures of 16th century Italy.
Cardano was a doctor, a philosopher, an astrologer, and a mathemadti-
cian. In each of those fields he came to be well known and respected
throughout Europe. In 1552, for example, he was invited to come to
Scotland to help treat the Bishop of St. Andrews, who was suffering
from serious asthma attacks. He agreed to go and was successful in
curing the Bishop, and that solidified his fame.

Cardano’s adventures with the cubic equation happened earlier in
his life. Having heard of Tartaglia’s solution, Cardano contacted him in
1539 to try to convince him to share the secret. Cardano’s many pleas
and promises of secreey? eventually convinced Tartaglia, who came to
Milan to explain his solution to Cardano. Once in possession of a
method for solving a couple of cases of the cubic, Cardano attacked the
problem of the general equation and, after six vears of intense work,
managed to solve it completely. His assistant, Lodovico Ferrari (1522
1565}, applied the same set of ideas to the general equation of degree
four {the guartic) and managed to find a solution for that, too.

At this point, Cardano knew that he had made a real contribution
to mathematics. But how could he publish it without breaking his
promise? He found a way. He discovered that del Ferro had found
the solution of the crucial case before Tartaglia had. Since he had
not promised to keep del Ferro's solution secret, he felt that he could
publish it, even though it was identical to the one he had learned from
Tartaglia. The resulting book was called Ars Magna, meaning “The
Great Art,)” that is, algebra. It contains a complete account of how
to solve any cubic equation, with geometric justifications of why the
methods work. The book also includes Ferrari's solution of the quartic.
Written in Latin, the book reached scholars all over Europe. And, of
course, it reached Tartaglia.

Tartaglia was furious, but what could he do? The secret was out.
He made public the story of Cardano’s treachery, but Cardano was on
to other things. Instead, Ferrari contacted Tartaglia and challenged
him to a competition. Tartaglia considered Ferrari an unimportant

2 According to Tartaglia, Cardano said I swear to vou, by God's holy Gaospels,
and as a true man of honour, not only never to publish your discoveries, if you teach
me them, but I also promise vou, and [ pledge my faith as a true Christian, to note
them down in code, so that after my death no one will be able to understand them.”
See [54], p. 255.
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voung man, so at first he was not interested in the challenge unless
Cardano could be brought in, as well. But in 1548 Tartaglia was offered
a professorship on the condition that he defeat Ferrari in a contest. He
agreed, expecting to win easily. Ferrari, however, knew how to solve the
general cubic and quartic equations, and Tartaglia had not absorbed
that part of the Ars Magna. Tartaglia lost, and he remained resentful
of Cardano to the end of his life.

This is not yet the end of the stary, however. Applying Cardano’s
method to equations of the form z* = pz + ¢, one sometimes ended up
with expressions that didn’t seem to make any sense. For example, for
z® = 15z + 4, Cardano’s method gives

ey 1y o) R 1

Normally, one would conclude from the appearance of roots of nega-
tive numbers that the equation has no solution. But in this case the
equation does have a solution, namely = = 4.

Cardano noticed this problem before he wrote the Ars Magna, and
he asked Tartaglia about it. Tartaglia seems to have had no answer; he
just suggested that Cardano had simply not understood how to solve
such problems. It fell to Rafael Bombelli (1526-1572) to resolve the
issue. Bombelli began by discussing the equation given above. He then
showed, geometrically, that =° = px + ¢ always has a positive solution,
regardless of the (positive) values of p and ¢. On the other hand, he
showed that, for many values of p and ¢, solving this equation led to
square roots of negative numbers. What Bombelli did at this point was
nothing short of brilliant (for his time). He showed that it is possible
to work with square roots of negative numbers and still get reasonable
answers! (You can find more details about this in Sketch 17.)

With the cubic and quartic solved, the natural next target was the
equation of degree 5. That proved to be a much more difficult problem.
In fact, it turned out to be impossible to find a formula for solving the
general quintic equation. Proving this required a complete change of
point of view, which eventually led to the development of abstract
algebra.

For a Closer Look: There is a good account of the solution of the
cubic equation in [80, Chapter 9]. Al-Khayammi’s algebra has been
translated into English: see [82]. Cardano’s Ars Magna and his auto-
biography are also available in English as [26] and [27]. They offer a
fascinating glimpse of the ways of thought of one of the most brilliant
of Renaissance men.



After reading the two selections, please answer the following questions:

1. Why didn't Al-Khwarizmi’s quadratic formula rule not give both positive and
negative roots?

2. How would Al-Khwarizmi have solved ax?> + bx + c = 0?

3. Describe the convention for using letters to represent numbers.

4. Which two Italian mathematicians dueled and what was the outcome?

5. How many different kinds of cubic equations are there according to Al-

Khayammi?

6. Who was Cardano? What was his contribution to mathematical history?

7. What happened to Tartaglia?

8. Did anyone ever address the negative number issue? If so, who and whe



