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The Cossic Art

Writing Algebra with Symbols

‘ N 7 hen you think of algebra, what comes to mind first? Do you

think of equations or formulas made up of z’s and y’s an.d

other letters, strung together with numbers and arithmetic

symbols? Many people do. In fact, many people regard algebra simply

as a collection of rules for manipulating symbols that have something
to do with numbers.

There’s some truth in that. But describing algebra solely in terms of
its symbols is like describing a car by its paint job and body style. What
you see is not all you get. In fact, like a car, most of what makes alge'bra
run is “under the hood” of its symbolic appearance. Nevertheless, just
as an automobile’s body styling can affect its performance and value,
so does the symbolic representation of algebra affect its power and
usefulness. . .

An algebra problem, regardless of how it’s written, is a questlpn
about numerical operations and relations in which an unknown quantity
must be deduced from known ones. Here’s a simple example:

Twice the square of a thing is equal to five more than three
times the thing. What is the thing?

Despite the absence of symbols, this is clearly an algebra question.
Moreover, the word “thing” was a respectable algebraic term for a very
long time. In the 9th century, Al-Khwarizmi (whose book title, al-
jabr w’al mugabala, is the source of the word “algebra”) used the word
shai to mean an unknown quantity. When his books were translated
into Latin, this word became res, which means “thing”. For instanc.e,
John of Seville’s 12th-century elaboration of Al-Khwarizm1’s arithmetic
contains this question, which begins “Quaeritur ergo, quae res..”:!

It is asked, therefore, what thing together with 10 of its
roots or what is the same, ten times the root obtained from
it, yields 39.

In modern notation, this would be written either as = + 10\/5 =S 3.9
or as z2 + 10z = 39. (An “X” appears in the Latin version of this
question, but it’s actually the Roman numeral for 10. To avoid such

1See p. 336 of [23] for both the original Latin and this translation.
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96 Writing Algebra with Symbols

confusions and emphasize more significant variations in notation, we
use familiar numerals in all these algebra examples.?)

Some Latin texts used causa for Al-Khwarizmi’s shai, and, when
these books were translated into Italian, causa became cosa. As other
mathematicians studied these Latin and Italian texts, the word for the
unknown became Coss in German. The English picked up on this and
called the study of questions involving unknown numbers “the Cossic
Art” (or “Cossike Arte” in the spelling of those days) — literally, “the
Art of Things”.

Like most of our familiar algebraic symbols, the = and other letters
we now use to represent unknown numbers are relative newcomers to
the “art.” Many early algebraic symbols were just abbreviations for
frequently used words: p or p or p for “plus,” m or 1 or m for “minus,”
and so on. While they saved writing time and print space, they did
little to promote a deeper understanding of the ideas they expressed.
Without consistent and illuminating symbolism, algebra was indeed an
art, an often idiosyncratic activity that depended heavily on the skill
of its individual practitioners. Just as standardization of parts was a
critical step in the mass production of Henry Ford’s automobiles, so the
standardization of notation was a critical step in the use and progress
of algebra.

Good mathematical notation is far more than efficient shorthand.
Ideally, it should be a universal language that clarifies ideas, reveals
patterns, and suggests generalizations. If we invent a really good nota-
tion, it sometimes seems to think for us: just manipulating the notation
achieves results. As Howard Eves once said, “A formal manipulator in
mathematics often experiences the discomforting feeling that his pencil
surpasses him in intelligence.”3

Our current algebraic notation is close to this ideal, but its devel-
opment has been long, slow, and sometimes convoluted. For a flavor
of that development, we’ll look at various ways in which a typical al-
gebraic equation would likely have been written in different times and
places during the progress of algebra in Europe. (To highlight the nota-
tional development, we use English in place of Latin or other languages
when words, rather than symbols, would be used.)

Here is an equation containing some common ingredients of early
algebraic investigations:

23 =522 +Te =T +6

2See Sketch 1 for an account of how numerals have changed over the years.

3See [45], entry 251.
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In 1202, Leonardo of Pisa would have written that equation (perhaps
rearranged for clarity) entirely in words, something like this:

The cube and seven things less five squares is equal to the
root of six more than the thing.

This approach to writing mathematics is usually called rhetorical, in
contrast to the symbolic style we use today. In the 13th and 14th
centuries, European mathematics was almost entirely rhetorical, with
occasional abbreviations here and there. For instance, Leonardo began
to use R for “square root” in some of his later writings.

Late in the 15th century, some mathematicians started to use sym-
bolic expressions in their work. Luca Pacioli, whose Summa de Arit-
metica of 1494 served as a main source of Europe’s introduction to the
cossic art, would have written

cu.m.b.ce.p.7.co. Ruv.co.p.6.

In this notation, co is an abbreviation for “cosa,” the unknown quan-
tity. The abbreviations ce and cu are for “censo” and “cubo,” words
that the Italian mathematicians used for the square and the cube of
the unknown, respectively. Notice that we refer to the unknown here.
A fundamental weakness of this notation was its inability to represent
more than one unknown in an expression. (By way of contrast, the
Hindus had been using the names of colors to represent multiple un-
knowns as early as the 7th century.) Some other interesting features of
Pacioli’s notation are the dots that separate each item from the next,
a long dash for equality, and the symbol R to denote square root. The
grouping of terms after the root sign was signaled by v, an abbreviation
for “universale.” The notation used in Girolamo Cardano’s Ars Magna
half a century later in Italy was almost identical to this.

In early 16th-century Germany, some of the symbols we use now
began to appear. The + and — signs were adopted from commercial
arithmetic and the “surd” symbol, /, for square root evolved, some
say from a dot with a “tail,” others say from a handwritten r. Equality
was noted by abbreviating either the Latin or German word for it,
and the grouping of terms (such as the sum after the |/ sign) was
signaled by dots. Thus, in Christoff Rudolff’s Coss of 1525 (which has
an impossibly long formal title) or Michael Stifel’s Arithmetica Integra
of 1544, our equation might have appeared as

€ —5% + 7R aequ. /. R +6.

As in the earlier Italian notation described above, different powers of
the unknown had distinct, unrelated symbols. Its first power was called
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the root (radiz) and represented by . The symbol for its square was
%, @ small script z which was the first letter of its German name,
zensus. The third power, cubus, was symbolized by €. Higher powers
of the unknown were written by combining the square and cube symbols
multiplicatively, when possible; the fourth power was 3 3> the sixth
power was €, and so on. Higher prime powers were handled by
introducing new symbols.

Easier ways to denote powers of the unknown had already begun
to emerge in other countries. One of the most creative instances of
this appeared in a 1484 manuscript by Nicholas Chuquet, a French
physician. Like others of his time, Chuquet confined his attention to
powers of a single unknown. However, he denoted the successive powers
of the unknown by putting numerical superscripts on the coefficients.
For example, to denote 5z* he would write 5%. He did a similar thing
for roots, writing /5 as R3.5. Chuquet was also well ahead of his time
in treating zero as a number (particularly as an exponent) and in using
an underline for aggregation. If our example equation had appeared in
his manuscript, it would have looked like this:

13.m.52.p.7 . montent R2.11.5.6°.

Unfortunately for the development of algebraic notation, Chuquet’s
work was not published at the time it was written, so his innovative
ideas were known only to a few mathematicians by the beginning of
the 16th century. This system of denoting powers of the unknown
reappeared in 1572 in the work of Rafael Bombelli, who placed the ex-
ponents in small cups above the coefficients. Bombelli’s work was more
widely known than that of Chuquet, but his notation was not immedi-
ately adopted by his contemporaries. In the 1580s it was picked up by
Simon Stevin of Belgium, a military engineer and inventor, who used
circles around the exponents. Stevin’s mathematical writing empha-
sized the convenience of decimal arithmetic. Some of his publications
were translated into English early in the 17th century, thereby carrying
both his ideas and his notation across the English Channel.

A major breakthrough in notational flexibility and generality was
made by Frangois Viete in the last decade of the 16th century. Viete
was a lawyer, a mathematician, and an advisor to King Henri IV of
France with duties that included deciphering messages written in se-
cret codes. His mathematical writings focused on methods of solving
algebraic equations, and to clarify and generalize his work he intro-
duced a revolutionary notational device. In Viete’s own words:

In order that this work may be assisted by some art, let the
given magnitudes be distinguished from the undetermined
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unknowns by a constant, everlasting and very clear symbol,
as, for instance, by designating the unknown magnitude
by means of the letter A or some other vowel...and the
given magnitudes by means of the letters B, G, D or other
consonants.*

Using letters for both constants and unknowns alloweq Viete to WriFe
general forms of equations, instead of relying on specific examples in
which the particular numbers chosen might improperly affegt the solu-
tion process. Some earlier writers had experimented with using letters,
but Viete was the first to use them as an integral part of algebra. It
may well be that the emergence of this powerful notational device was
delayed because the Hindu-Arabic numerals were not commonly used
until well into the 16th century. Prior to that, Roman numerals (and
Greek numerals before them) were used for writing numbers, and these
systems used letters of the alphabet for specific quantities.

As soon as equations contained more than one unknown, it became
clear that the old exponential notation was insufficient. It would not do
to write 53 + 72 if one meant 543 + 7E?. In the 17th century, several
competing notational devices for this appeared almost Simul.taneo.usly.
In the 1620s, Thomas Harriot in England would have written it as
5aaa + Tee. In 1634, Pierre Hérigone of France wrote unknowns with
coefficients before and exponents after, as in 5a3 + 7e2. In 1636, James
Hume (a Scotsman living in Paris) published an edition of Viete’s a.l—
gebra with exponents elevated and in small Roman nur%lerals, as 17n
5att + 7ei. In 1637, a similar notation appeared in René Descartes.s
La Géométrie, but with the exponents written as small Hindu-Arabic
numerals, as in 5a® + 7e?. Of these notations, Harriot’s and Hérigone’s
were the easiest to typeset, but conceptual clarity won out over typo-
graphical convenience and Descartes’s method eventually became the
standard notation used today.

Descartes’s influential work is also the source of some other nota-
tional devices that have become standard. He used lowercase letters
from the end of the alphabet for unknowns and lowercase letters from
the beginning of the alphabet for constants. He also used an overline
bar from the / sign to indicate its scope. However, he introduced the
symbol 0 for equality. Thus, Descartes’s version of our sample equa-
tion would be very much, but not entirely, like our own:

23 --5zx+ 7z 0/ +6

4From Viete’s In artem analyticam Isagoge of 1591, as translated by J. Winfree
Smith. See [84], p 340.
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The = sign for equality, proposed in 1557 by Robert Recorde® and
widely used in England, was not yet popular in continental Europe. In
the 17th century it was only one of several different ways of symbolizing
equality, including ~ and the 2 sign of Descartes. Moreover, = was
being used to denote other ideas at this time, including parallelism,
difference, and “plus or minus.” Its eventual universal acceptance as
the symbol for “equals” is probably due in large part to its adoption by
both Isaac Newton and Gottfried Leibniz. Their systems of the calculus
dominated the mathematics of the late 17th and early 18th centuries,
so their notational choices became widely known. During the 18th
century, the superior calculus notation of Leibniz gradually superseded
that of Newton. Had Leibniz chosen to use Descartes’s symbol instead
of Recorde’s, we might be using 2 for equality today.

This sketch has tried to capture the flavor of the long, erratic, some-
times perverse way in which algebraic symbolism has developed. In
hindsight, “good” notational choices have proved to be powerful stim-
uli for mathematical progress. Nevertheless, those choices often were
made with little awareness of their importance at the time. The evolu-
tion of exponential notation is a prime example of this. Powers of an
unknown quantity were trapped for centuries by the limited geometric
intuition of squares and cubes, and the notation reinforced this confine-
ment. Descartes finally liberated them by treating squares, cubes, and
the like as magnitudes independent of geometric dimension, giving a
new legitimacy to x*, 2%, 2%, and so on. From there the notation itself
suggested natural extensions — to negative integral exponents (recip-
rocals), to rational exponents (roots of powers), to irrational exponents
(limits of roots of powers), and even to complex exponents. And in the
20th century, this exponential notation was reconnected with the geo-
metric idea of dimension to help lay the foundation of a new field of
mathematical investigation: fractal geometry.

For a Closer Look: There are treatments of the evolution of algebraic
notation in most surveys of the history of mathematics. For specific in-
formation on the history of mathematical notations, the best reference
is still [23], though Farliest Uses of Various Mathematical Symbols, a
web site at http://members.aol.com/jeff570/mathsym.html maintained
by Jeff Miller, is now a serious contender. For more on the history of
algebra, see [10] and [138].

5See Sketch 2 for more details about this.

Linear Thinking

Solving First Degree Equations

naturally whenever we apply mathematics to the real world. E’s

not surprising, then, to find that almost everyone who studied
mathematics, from the Egyptian scribes to the Chinese civil servants,
developed techniques for solving such problems.

The Rhind Papyrus, a collection of problems probably used for
training young scribes in Ancient Egypt, contains several problems Qf
this kind. Some are simple and straightforward, others quite compli-
cated. Here's a simple one:

P roblems that reduce to solving an equation of degree one arise

A quantity; its half and its third are added to it. It becomes 10.

In our notation, that is just the equation

1 1
T+ 59: + gx = 10.
(Keep in mind, though, that this kind of symbolism was still far in th.e
future, as explained in Sketch 8.) The scribe is instructed to solve it
just as we would: divide 10 by 1 + % + %
Quite often, however, the problems in the Rhind Papyrus are solved
by a very different method.

A quantity; its fourth is added to it. It becomes 15.

Instead of dividing 15 by 1;11—, the scribe proceeds as follows. He assumes
(or posits) that the quantity is 4. (Why 47 Because it’s easy to compute
a fourth of 4.) If you take 4 and add its fourth to it, you get 4+1=5.
So we wanted 15, but we got 5; we need to multiply what we got (that
is, 5) by 3 to get what we wanted to get (that is, 15). So'we take our
guess and multiply it by 3. Our guess was 4, so the answer is 3 x4 = 12.

This method is known as false position: we posit an answer that
we don’t really expect to be the right one, but which makes the com-
putations easy. Then we use the incorrect result of that guess to find
the number by which we need to multiply our guess to get the correct
answer. .

Symbols make this easy to understand. The equation we're solving
looks like Az = B. If we multiply x by a factor, so that it becomes kz,
we see that

A(kz) = k(Az) = kB.
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So scaling the input by some factor scales the output by the same
factor. This is what allows the method of false position to work; we
use our guess to find the right factor.

Throughout antiquity, the method of false position was used to solve
linear equations, including some pretty complicated ones. These range
all the way from practical problems to more fanciful problems with a
recreational flavor.

However, this method can only be applied to equations of the form
Axr = B. If, instead, the equation were Az + C = B, then it is no
longer true that multiplying = by a factor causes B to change by the
same factor, and this simple version of the method breaks down. We
might try subtracting C' from both sides, but that isn’t always as easy
as it sounds, because the expression on the left side might initially be
very complicated, and finding the correct constant to subtract would
require us to simplify it to the form Az + C.

Instead, a way was found to extend the basic idea to equations of
that type without any such algebraic manipulation. It is called the
method of double false position. This is such an effective method for
solving linear equations that it continued to be used long after the
invention of algebraic notations. In fact, since it doesn’t require any
algebra, it was taught in arithmetic textbooks as recently as the 19th
century. Here’s an example,! from Daboll’s Schoolmaster’s Assistant,
published in the early 1800s.

A purse of 100 dollars is to be divided among four
men A, B, C, and D, so that B may have four
dollars more than A, and C' eight dollars more
than B, and D twice as many as C'; what is each
one’s share of the money?

A modern approach to this would be to let x be the amount given
to A. Then B gets x + 4, C gets (x +4)+8 = z + 12, and D gets
2(x 4 12). Since the total is $100, we get the equation

T+ (x+4)+ (x + 12) + 2(z + 12) = 100,

which we then solve in the usual way.

Instead, here’s what Daboll’s recommends: Make a first guess, say
that A gets 6 dollars. Then B gets 10, C gets 18 and D gets 36. (Notice
that we don’t need to work out how D’s amount is related to A’s to do
this; we just go step by step.) Adding up the amounts gives $70 as the
total; we’re off by $30.

!Taken from [20], pp. 34-35.
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So we try again. This time we guess a little higher, say that A gets
8 dollars. Then B gets 12, C gets 20, and D gets 40, for a total of $80.
That’s still wrong, off by $20.

Now comes the magic. Lay out the two 6 30
guesses and the two errors as in Display 1.
Cross multiply: 6 x 20 is 120, and 8 x 30 is
240. Take the difference, 240 — 120 = 120,
and divide by difference of the errors, in 5 50

this case by 10. The right choice for the
amount A gets is 120/10 = 12.

This, Daboll’s explains, is the procedure when the two errors are
of the same type (both underestimates, in our case). If they were of
different types, we would use the sum of the products and divide by the
sum of the errors. (This is just a way of avoiding negative nurnbers.).

Modern readers usually find this method puzzling: Why does it
work? Probably the best way to analyze it is to use some graphical
thinking. No matter what the outcome of simplifying the left side of

z+ (z+4) + (z + 12) + 2(z + 12) = 100,

the equation will be something of the
form max +b = 100. So we can think of it
like this: there is a line y = mx + b, and
we would like to determine the value of
x for which y = 100. To determine the
line, we need two points, and the two
guesses provide that for us: Both (6,70)
and (8,80) are on the line. We want to
: find z so that (z,100) is on the same
68 = line. (See Display 2.) The slope of the
line is a constant; we can compute it as
“rige over run” using the first and third
points. We can also compute it using the second and third points, and
the answers must be the same. Therefore, we see that

100 — 70 - 100 — 80
z—6  x—-8

Display 1

100 T

80 T
70 T

Display 2

o 30 20

z—6 z-8
Notice that the numerators are exactly the errors we had before. Now

cross-multiply to get

30(z — 8) = 20(z — 6),
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which quickly simplifies to
(30 —20)z = (30 x 8) — (20 x 6);

that is,

~ (30 x 8) — (20 x 6) B 120;12
30 —20 w0 T
This is exactly the same computation as in the method of double false
position.

Of course, our way of understanding equations as lines is quite re-
cent (it goes back only to the 17th century; see Sketch 16), and double
false position is very old. But the actual slope of the line never needs
to be computed. In fact, we don’t even have to think of these ratios as
slope in any graphical sense. All we need to know is that the change
in the output is proportional to the change in the input, which is the
essence of what “linearity” is all about. And this the ancients did
understand.

The distinction between “linear” and “nonlinear” problems is still
useful today. We apply it not only to equations but also to many
other kinds of problems. In linear problems, there is a simple relation
— a constant ratio — between changes in the input and changes in
the output, exactly as we saw above. In nonlinear problems, there
is no such simple relation, and sometimes very small changes in the
input may produce huge changes in the output. We still don’t have a
complete understanding of nonlinear problems. In fact, we often use
linear problems to find approximate solutions to nonlinear ones. And
the methods we use for solving those linear problems are based on the
same fundamental insight that serves as the basis for the method of
false position.

For a Closer Look: Because solving linear equations is relatively
easy, few of the standard history books have sections specifically on
that subject. There is a short discussion in [20] (pp. 31-35). Many
sample problems can be found in [54].
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Fre’s the computation in our symbols:

z=1+52+39—5=125+39—5=64—5=8— 3.

ITranslated by Frederic Rosen; see [83], p. 8.
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NAME: Section:

1. What did the English call the study of questions involving unknown numbers?

2. What do you think of Howard Eve’s quote?

3. What was Viéte’s revolutionary notational device?

4. Describe the method of “false position.” (There should be 2-4 sentences for this
answer)

5. In the method of “double false position” the author states that we don’t even have to
compute the actual slope of the line. What does he say we need to know?



