
Measuring the Ci,rcle

,ccuracy more reliable? A problem such as generating the digits
:ovides a proving ground for technological improvement.
vertheless, probably the most honest explanation of such per-
:e is simple human curiosity about the unknown. Virtuaily any
m without an easy solution will lure at least a few people to pur-
sometimes obsessively. The history of both the progress and the
I the human race is dotted with the achievements and the misad-
es of such people. Not knowing in advance which questions will
hich way adds a risk factor that makes them more inviting. In
matics, as in any sport, overcoming the chalienges of the untried
re unknown is its own reward.
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The first 1000 decimal places of a

i Closer Look: Beckmann's [11] is a readable book about the
y of r. Also worth looking at is [16], which collects many arti-
ncluding some of the original sources (for example, it contains a
ing from Shanks's originai publication). The latest information
Prof. Kanada's computations can be found via the home page of
Kanada's laboratory at pi2.cc.u-tokyo ac.jp.

The Cossic Art

Writing Algebra with Symbols

hen you think of algebra, what comes to mind first? Do you

think of equations or formulas made up of r's and g's and

other letters, strung together with numbers and arithmetic

symbols? Many people do. Inlact, many people regard algebra simply
:__ -

as a collection oi rules for manipulating symbols that have something

to do with numbers.

There's some truth in that. But describing algebra solely in terms of

its symbols is like describing a car by its paint job and body style' What

yor, ,." is not ail you get. In fact, Iike a car, most of what makes algebra

,un is "und.er the hood" of its symboiic appearance' Nevertheless, iust

as an automobile's body styling can affect its performance and value,

so does the symbolic representation of algebra affect its power and

usefuiness.
An algebra problem, regardless of how it's written, is a question

about numerical operations and relations in which an unknown quantity

must be deduced from known ones. Here's a simple example:

Twice the square of a thing is equal to fi.ve more than three

times the thing. What is the thing?

Despite the absence of symbols, this is ciearly an algebra question'

Moreover, the word "thing" was a respectable algebraic term for a very

Iong time. In the 9th century, Al-Khwarizmi (whose book title, al-

jabr w'al muqabala, rs the source of the word "algebra") used the word

shat Io mean an unknown quantity. when his books were translated

into Latin, this word became res, which means "thing". For instance,

John of seviiie's 12th-century elaboration of Al-Khwarizml's arithmetic

contains this question, which begins "Quaeritur el.go, quae res"'"'1

I t isasked,therefore,whatthingtogetherwithl0of i ts
roots or what is the same, ten times the root obtained from

it, yields 39.

In modern notation, this would be written either as r * L}r/i : 39

or aS 12 + 10r - 39' (An ..X', appears in the Latin version of this

question, but it's actually the Roman numelal for 10' To avoid such

lSee p. 336 of [23] for both the original Latin and this translation'
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96 Wri,ti,ng Algebra wi,th Symbols

confusions and emphasize more significant variations in notation, we
use familiar numerals in all these algebra examples.2)

Some Latin texts used causa for Al-Khwarizmr's shai,. and. when
these books were translated into Italian, causa became cosa. As other
mathematicians studied these Latin and Itaiian texts, the word for the
unknown became Coss in German. The English picked up on this and
called the study of questions involving unknown numbers "the Cossic
Art" (or "Cossike Arte" in the spelling of those days) - literally, "the
Art of Things".

Like most of our familiar algebraic symbols, the r and other letters
we now use to represent unknown numbers are relative newcomers to
the "art." Many early algebraic symbols were just abbreviations for
frequently used words: p or fr or p for "plus," m or fr, or m for "minus,"
and so on. While they saved writing time and print space, they did
little to promote a deeper understanding of the ideas they expressed.
Without consistent and illuminating symboiism, algebra was indeed an
art, an often idiosyncratic activity that depended heavily on the skill
of its individual practitioners. Just as standardization of parts was a
critical step in the mass production of Henry Ford's automobiles, so the
standardization of notation was a critical step in the use and progress
of algebra.

Good mathematical notation is far more than efficient shorthand.
Ideally, it should be a universal language that ciarifies i.deas, reveals
patterns, and suggests generalizations. If we invent a really good nota-
tion, it sometimes seems to think for us: just manipulating the notation
achieves results. As Howard Eves once said, "A formal manipulator in
mathematics often experiences the discomforting feeling that his pencil
surpasses him in intelligence."3

Our current algebraic notation is close to this ideal, but its devel-
opment has been long, slow, and sometimes convoluted. For a flavor
of that development, we'll iook at various ways in which a typical al-
gebraic equation would likely have been written in different times and
places during the progress of algebra in Europe. (To highlight the nota-
tional development, we use English in place of Latin or other languages
when words, rather than symbois, would be used.)

Here is an equation containing some common ingredients of early
algebraic investigations :

13-br2+Tr: \ t r+6

2See Sketch 1 for an account of how numerals have changed over the years.

3See 
[45],  entry 251.

The Cossi,c Art

In 1202, Leonardo of Pisa would have written that equation (perhaps

rearranged for clarity) entirely in words, something like this:

The cube and seven things less five squares is equal to the

root of six more than the thing.

This approach to writing mathematics is usually called rhetorical, in

contrast to the symbolic style we use today. In the 13th and 14th

centuries, European mathematics was aimost entirely rhetorical, with
occasional abbreviations here and there. For instance, Leonardo began

to use R for "square root" in some of his later writings.

Late in the 15th century, some mathematicians started to use sym-

bolic expressions in their work. T,uca Pacioli, whose Summa de Ari,t-

metica of 7494 served as a main source of Europe's introduction to the

cossic art, would have written

cu.fi,. 5. ce.f . 7. co.-71'u . co.fl . 6.

In this notation, co is an abbreviation for "cosa," the unknown quan-

tity. The abbreviations ce and cLL are for "censo" and "cubo," words

that the Italian mathematicians used for the square and the cube of

the unknown, respectively. Notice that we refer to the unknown here.

A fundamental weakness of this notation was its inability to represent
more than one unknown in an expression. (By way of contrast, the

Hindus had been using the names of colors to represent multiple un-

knowns as early as the 7th century.) Some other interesting features of

Pacioli's notation are the dots that separate each item from the next,

a long dash for equality, and the symbolTl.to denote square root' The
grouping of terms after the root sign was signaled by ,, an abbreviation

for "universale." The notation used in Girolamo Cardano's ,4rs Magna

half a century later in Itaiy was almost identical to this.

In early 16th-century Germany, some of the symbols we use now

began to appear. The f and - signs wele adopted from commercial

arithmetic and the "surd" symbol, ;/, for square root evolved, some

say from a dot with a "tail," others say from a handwritten r. Equality

was noted by abbreviating either the Latin or German word for it,

and the grouping of terms (such as the sum after the / sign) was

signaled by dots. Thus, in Christoff Rudolff's Coss of 1525 (which has
an impossibly long formal title) or Michael Stifel's Ari,thmet'ica Integra

of L544, our equation might have appeared as

& - 5z + 7\ aequ, r/.) l + 0.

As in the earlier Itaiian notation described above, different powers of
the unknown had distinct, unrelated symbols. Its first power was called
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CIR Wri,ting Algebra w,ith Symbols

the root (rad'ir) and represented by )Q The symbol for its square was

A, a smali script z which was the first letter of its German rrame,
zensus. The third power, cubus, was symbolized by c . Higher powers
of the unknown were written by combining the square and cube symbols
multiplicatively, when possible; the fourth power was ] |, the sixth
power was )6G , and so on. Higher prime por^/ers weri -handled 

by
introducing new symbols.

Easier ways to denote powers of the unknown had already begun
to emerge in other countries. One of the most creative instances of
this appeared in a 1484 manuscript by Nicholas Chuquet, a French
physician. Like others of his time, Chuquet confined his attention to
powers of a single unknown. However, he denoted the successive powers
of the unknown by putting numerical superscripts on the coefficients.
For example, to denote 5ra he would write 54. He did a similar thing
for roots, writing .75 m nt .5. Chuquet was also weli ahead of his time
in treating zero as a number (particularly as an exponent) and in using
an underline for aggregation. If our exampie equation had appeared in
his manuscript, it would have looked like this:

73 .m.52 .p.71 .  montent l l? . t t  .p.Ao .

Unfortunateiy for the development of aigebraic notation, Chuquet's
work was not published at the time it was written, so his innovative
ideas were known only to a few mathematicians by the beginning of
the 16th century. This system of denoting powers of the unknown
reappeared in 1572 in the work of Rafael Bombelli, who placed the ex-
ponents in small cups above the coefficients. Bombelii,s work was more
widely known than that of Chuquet, but his notation was not immedi-
ately adopted by his contemporaries. In the 1b80s it was picked up by
Simon Stevin of Belgium, a military engineer and inventor, who used
circles around the exponents. Stevin's mathematical writing empha-
sized the convenience of decimal arithmetic. Some of his publications
were translated into English early in the 17th century, thereby carrying
both his ideas and his notation across the trnglish channel.

A major breakthrough in notational flexibility and generality was
made by Frangois Vibte in the last decade of the 16th century. Vibte
was a lawyer, a mathematician, and an advisor to King Henri IV of
France with duties that inciuded deciphering messages written in se-
cret codes. His mathematical writings focused on methods of solving
aigebraic equations, and to clarify and generalize his work he intro-
duced a revolutionary notational device. In vidte's own words:

In order that this work may be assisted by some art, Iet the
given magnitudes be distinguished from the undetermined

Tlte Cossi,c Art

unknowns by a constant, everlasting and very clear symbol,

as, for instance, by designating the unknown magnitude

by means of the letter A or some other vowel. . . and the

given magnitudes by means of the ietters B, G, D or other

consonants.a

Using letters fbr both constants and unknowns allowed Vibte to write

general forms of equations, instead of relying on specific exarnples in

which the particular numbers chosen might improperly affect the solu-

tion process. Some earlier writers had experimented with using letters,

but Vibte was the first to use them as an integral part of algebra. It

may well be that the emergence of this powerful notational device was

delayed because the Hindu-Arabic numerals were not commoniy used

untii weli into the 16th century. Prior to that, Roman numerals (and

Greek numerals before them) were used for writing numbers, and these

systems used letters of the alphabet for specific quantities.

As soon as equations contained more than one unknown' it became

clear that the old exponential notation was insufficient. It would not do

to write 53 + 72 if one meant 5,43 + 7 82. In the 17th century, several

competing notationai devices for this appeared almost simultaneousiy.

In the 1620s, Thomas Harriot in England would have written it as

Saaa l7ee. In 1634, Pierre H6rigone of France wrote unknowns with

coefficients before and exponents after, as in 543 * 7e2. In 1636, James

Hume (a Scotsman living in Paris) published an edition of Vibte's al-

gebra with exponents elevated and in small Roman numerals, as in

5oii ' i  a7"ii.In 1637, a similar notation appeared in Ren6 Descartes's

La G6om6.tri,e, but with the exponents written as small Hindu-Arabic

numerals, as in 543 + 7e2. Of these notations, Harriot's and H6rigone's

were the easiest to typeset, but conceptual clarity won out over typo-

graphical convenience and Descartes's method eventually became the

standard notation used today.

Descartes's influential work is also the source of some other nota-

tional devices that have become standard. He used lowercase letters

from the end of the alphabet for unknowns and lowercase letters from

the beginning of the aiphabet for constants. He also used an overline

bar from the / sign to indicate its scope. However, he introduced the

symbol r for equality. Thus, Descartes's version of our sample equa-

tion would be very much, but not entirely, Iike our own:

x:3 --5m*7tTttrTB

4From Vibte's In artem
Smith. See [84], p 340.

qq

analyt' icam Isagoge of 1591, as translated by J. Winfree
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The : sign for equality, proposed in 1557 by Robert Recordes and
widely used in England, was not yet popular in continental Europe. In
the 17th century it was only one of several different ways of symbolizing
equality, including - and the F sign of Descartes. Moreov€r, : s;as
being used to denote other ideas at this time, including parallelism,
difference, and "plus or minus." Its eventual universal acceptance as
the symbol for "equals" is probably due in large part to its adoption by
both Isaac Newton and Gottfried Leibniz. Their systems of the calculus
dominated the mathematics of the late 17th and early 18th centuries,
so their notational choices became widely known. During the 18th
century, the superior calculus notation of Leibniz gradually superseded
that of Newton. Had Leibniz chosen to use Descartes's symbol instead
of Recorde's, we might be using r for equality today.

This sketch has tried to capture the flavor of the long, erratic, some-
times perverse way in which algebraic symbolism has developed. In
hindsight, "good" notational choices have proved to be powerful stim-
uli for mathematicai progress. I\evertheless, those choices often were
made with little awareness of their importance at the time. The evolu-
tion of exponential notation is a prime example of this. Powers of an
unknown quantity were trapped for centuries by the limited geometric
intuition of squares and cubes, and the notation reinforced this confine-
ment. Descartes finally liberated them by treating squares, cubes, and
the like as magnitudes independent of geometric dimension, giving a
new legitimacy to 14, 15 , fr6, and so on. From there the notation itself
suggested natural extensions - to negative integral exponents (recip-
rocals), to rational exponents (roots of powers), to irrational exponents
(limits of roots of powers), and even to complex exponents. And in the
20th century, this exponential notation was reconnected with the geo-
metric idea of dimension to help iay the foundation of a new field of
mathematical investigation: fractal geometry.

For a Closer Look: There are treatments of the evoiution of algebraic
notation in most surveys of the history of mathematics. For specific in-
formation on the history of mathematical notations, the best reference
is still [23], though Earli,est (Jses of Various Mathematical Symbols, a
web site at http://members.aol.com I jeff570 I nathsym.html maintained
by Jeff Miller, is now a serious contender. For more on the historv of
algebra, see [10] and [138].

sSee Sketch 2 for more details about this.

Linear Thinking

Solving First Degree Equations

roblems that reduce to solving an equation of degree one arise

naturally whenever we apply mathematics to the real world' It's

not surprising, then, to find that almost everyone who studied

mathematics, from the Egyptian scribes to the Chinese civil servants,

developed techniques for solving such problems'

The Rhind Papyrus, a collection of problems probably used for

training young scribes in Ancient trgypt, contains several problems of

this kind. Some are simpie and straightforward, others quite compli

cated. Here's a simple one:

A quantity; its half and its third are added to it. It becomes 10.

In our notation, that is just the equation

11
r* 

rr  
+ j r : IU.

(Keep in mind, though, that this kind of symbolism was still far in the

irrtui", as explained in Sketch 8.) The scribe is instructed to solve it

just as we would: divide 10 bY t + | + ]'
Quite often, however, the problems in the Rhind Papyrus are solved

by a very different method.

A quantity; its fourth is added to it' It becomes 15'

Instead of dividing 15 by t ], the scribe proceeds as follows' He assumes

(or posi,ts) that the quantity is  . (Why 4? Because it's easy to compute

a fourth of a.) If you take 4 and add its fourth to it, you get 4*I : 5.

So we wanted 15, but we got 5; we need to multiply what we got (that

is, b) by 3 to get what we wanted to get (that is, 15). So we take our

guess and multiply it by 3. Our guess was 4, so the answel is 3 x 4: 12'

This method is known as false posi,ti,on: we posit an answer that

we don't really expect to be the right one, but which makes the com-

putations easy. Then we use the incorrect result of that guess to find

lhe number by which we need to multiply our guess to get the correct

answer.
Symbols make this easy to understand. The equation we're soiving

looks Iike Ar - B.If we multiply rby a factor, so that it becomes kr,

we see that

A(kr)  :  k(Ar)  :  kB '
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So scaiing the input by some factor scales the output by the same
factor. This is what allows the method of false position to workl we
use our guess to find the right factor.

Throughout antiquity, the method of false position was used to solve
iinear equations, including some pretty complicated ones. These range
ail the way from practical problems to more fanciful problems with a
recreational flavor.

However, this method can oniy be applied to equations of the form
Ar : B. If, instead, the equation were Ar -t C : B, then it is no
longer true that multiplying r by a factor causes B to change by the
same factor, and this simple version of the method breaks down. We
might try subtracting C from both sides, but that isn't always as easy
as it sounds, because the expression on the left side might initially be
very complicated, and finding the correct constant to subtract would
require us to simplify it to the form Ar * C.

Instead, a \May was found to extend the basic idea to equations of
that type without any such algebraic manipulation. It is called the
method of double false posit'ion. This is such an effective method for
solving linear equations that it continued to be used long after the
invention of algebraic notations. In fact, since it doesn't require any
algebra, it was taught in arithmetic textbooks as recently as the 19th
century. Here's an example,l from Daboll's Schoolmaster's Ass'istant,
published in the early 1800s.

A purse of 100 dollars is to be divided among four
men,4, B, C, and D, so that B may have four
dollars more than A, and C eight dollars more
than B, and D twice as many as C; what is each
one's share of the money?

A modern approach to this would be to let r be the amount given
to A. Then B gets r*4,  C gets (r+ )  *B: r*12, and l )  gets
2(r * 12). Since the total is $100, we get the equation

r -t (r+ 4) + (n + 12) + 2(r + 12) : 100,

which we then solve in the usual way.
Instead, here's what Daboll's recommends: Make a first guess, say

that A gets 6 dollars. Then B gets I0, C gets 18 and D gets 36. (i\otice
that we don't need to work out how fJ's amount is related to A's to do
this; we just go step by step.) Adding up the amounts gives $70 as the
total; we're off by $30.

rTaken from [20], pp. 34-35.
30(r-8) :20(r-6),

L'inear Th,inki'ng

so we try again. This time we guess a little higher, say that A gets

B dollars. Then B gets 12, c gets 20, and D gets 40, for a total of $80'

That's still wrong, off bY $20.
i{;;;;*"' tf; ;'si.. Lay out the two g 2
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guesses and the two errors as in Display 1' 
\ ,/

Cross multipiy: 6 x 20 is 120, and B x 30 is ><
240. Take the difference, 240 - I20 : 120, ,/ \
and divide by difference of the errors, in {
this case by 10. The right choice for the 

Display 1
amount A gets is i20/10 - 12.

This, Daboll's explains, is the procedure when the two errors are

of the same type (both underestimates, in our case). If they were of

different types, we would use the sum of the products and divide by the

sum of the errors. (This is just a way of avoiding negative numbers')

Modern readers usually find this method puzzling: why does it

work? Probably the best way to analyze it is to use some graphical

thinking. No matter what the outcome of simplifying the left side of

r t  (r+ 4) + (r + 12) + 2(r + 72) :  100,

Display 2

the equation will be something of the

form mr *b : 100. So we can think of it

like this: there is a line U : mr * b, and

we would like to determine the value of

r f.or which I : 100. To determine the

line, we need two Points, and the two

guesses provide that for us: Both (6,70)

and (8,80) are on the line. We want to

find z so that (r, 100) is on the same

line. (See Display 2.) The slope of the

line is a constant; we can compute it as

"rise over run" using the first and third

points. we can also compute it using the second and third points, and

the answers must be the same. Therefore, we see that

100 - 70 100 - 80
:-

r-6 r-8

30 20
r-6 r-8 '

Notice that the numerators ale exactly the errors we had before' Now

cross-multipiy to get
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which quickly simplifies to

(30 - 20)r: (30 x B) - (20 x 6);

that is,

_ (30x8)-(20x6) _120
30-20 10

same computation as in the

-  1)

method of double faise

r

This is exactly the
positlon.

of course) our way of understanding equations as lines is quite re-
cent (it goes back only to the 17th century; see Sketch 16), and double
false position is very old. But the actual siope of the line never needs
to be computed. In fact, we don't even have to think of these ratios as
slope in any graphical sense. All we need to know is that the change
in the output is proportional to the change in the input, which is the
essence of what "linearity" is all about. And this the ancients did
understand.

The distinction between "linear" and "nonlinear" probiems is still
useful today. We apply it not only to equations but also to rnany
other kinds of problems. In linear problems, there is a simple relation
- a constant ratio - between changes in the input and changes in
the output, exactly as we saw above. In nonlinear problems, there
is no such simple relation, and sometimes very small changes in the
input may produce huge changes in the output. We still don't have a
complete understanding of nonlinear problems. In fact, we often use
linear problems to find approximate solutions to nonlinear ones. Ancl
the methods we use for solving those linear problems are based on the
same fundamental insight that serves as the basis for the method of
false position.

For a Closer Look: Because solving linear equations is relatively
easy) few of the standard history books have sections specifically on
that subject. There is a short discussion in [20] (pp. 31-3b). Many
sample problems can be found in lb4l.

A Square and Things

Quadratic Equations

he word "algebra" comes from a titie of a book written in Ara-

bic around the year 825. The author, Muhammad Ibn Musa

Al-Khwarizmt, was probably born in what is now uzbekistan.

He lived, however, in Baghdad, where the Caliph had established a kind

of academy of science called "The House of Wisdom." Al-Khwanzmr

was a generalist; he wrote books on geography, astronomy, ancl math-

ematics. But his book on algebra is one of his most famous.

Al-Khwarizmr's book starts out with a discussion of quadratic equa-

tions. In fact, he considers a specific problem:

One square, and ten roots of the Same, are equal to thirty-

nine dirhems. That is to say, what must be the squal'e

which, when increased by ten of its own roots, amounts to

thirty-nine?

If we call the unknown ,r, we might call the "square" ff2. Now, a

"root of this Square" is r, so "ten roots of the Sqtlafe" is 10r. {-Ising

this notation, the problem translates into solving the equation 12 +

10r : 39. But algebraic symboiism had not been invented yet, so all

Ai-Khwarizmr could clo was to say it in words. In the time-honored

tradition of algebra teachers everywhere, he follows the problem with

a kind of recipe for its solution, again spelled out in words:

The soiution is this: you halve the number of the roots,

which in the present instance yields five. This you multiply

by itself; the product is twenty-five. Add this to thirty-nine;

the sum is sixty-four. Now take the root of this, which is

eight, and subtract from it half the nurnber of the roots,

which is five; the remainder is three. This is the root of the

square which you sought for; the square itself is nine'i

Here's the computation in our symbols:

* :  t /b,  +Jg- 5 -  ! /2s + N- 5 -  
"84 

-5 :  B -  5 :  3.

lTranslated by Frederic Rosen; see [83], p' B
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NAME:______________________________   Section:_________ 
 
 
1.  What did the English call the study of questions involving unknown numbers? 
 
 
 
 
2.  What do you think of Howard Eve’s quote? 
 
 
 
 
 
 
3.  What was Viéte’s revolutionary notational device? 
 
 
 
 
 
 
 
4.  Describe the method of “false position.”  (There should be 2-4 sentences for this 
answer) 
 
 
 
 
 
 
 
 
 
 
 
5.  In the method of “double false position” the author states that we don’t even have to 
compute the actual slope of the line.  What does he say we need to know? 
 
 


