Prerequisites Chapter: Algebra 1 Review

P-1: Modeling the Real World

Model: - a mathematical depiction of a real world condition.

- it can be a formula (equations with meaningful variables), a properly drawn graph, a clearly labelled diagram with quantitative measurements.

Modelling: - the process of discovering the mathematical model.

- Example 1: To convert temperature measurements from degree Celsius to Fahrenheit, we can use the formula, $T_F = \frac{9}{5}T_C + 32$.
 - a. What is the temperature in Fahrenheit when the outside temperature is -10° C?
 - b. What is the temperature in degree Celsius for a patient with a temperature of 105 F?
 - c. At what temperature when its numerical value of degree Celsius is equivalent to that of Fahrenheit?

a. $T_F = \frac{9}{5} T_C + 3$	2 $T_F = \frac{9}{5} (-10) + 32$ $T_F = -18 + 32$	c. At the same numerical value, we can set $x = T_F = T_C$ $T_F = \frac{9}{5}T_C + 32$
b. We can manip	ulate the formula first before s	substitution.
$T_F = T_F - 32 = \frac{5}{9}(T_F - 32) = \frac{5}{9}((105) - 32) = \frac{5}{9}(105) = 32$	$= \frac{9}{5} T_{C} + 32$ $= \frac{9}{5} T_{C}$ $= T_{C}$ $T_{C} = 40.6$	$x = \frac{9}{5}x + 32$ $1x - \frac{9}{5}x = 32$ $-\frac{4}{5}x = 32$ $x = \left(-\frac{5}{4}\right)32$ $x = -40 \text{ F} = -40^{\circ}\text{C}$

Example 2: A rectangular box has a width measured twice its height and its length is three times its width. a. Find the volume of the box if it has a height of 8 cm.

- b. Write a formula for the volume V of this box in terms of its height x.
- c. What are the dimensions of this box if it has a volume of 768 cubic feet?

Example 3: Four identical circles are enclosed by a square as shown below. Determine the cut out area A in terms of r as represents by the shaded area.

P-2: Real Numbers

Set: - a group of objects (called elements of the set).

- we commonly use fancy brackets, { }, to include elements of a set.

Natural Numbers (N): - counting numbers.	$N = \{1, 2, 3, 4, 5, \ldots\}$
Whole Numbers (<i>W</i>): - counting numbers with 0.	$W = \{0, 1, 2, 3, 4, 5, \ldots\}$
Integers (<i>I</i>): - positive and negative whole numbers.	$I = \{\dots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \dots\}$

<u>Set Notation</u> (ϵ): - a symbol to indicate an object belongs in the a particular set.

Example: $0 \in W$ but $0 \notin N$ (0 belongs to in a set of whole numbers but not in a set of natural numbers.)

<u>Set-Building Notation</u>: - a set notation that involves a series of number.

Example: $Z = \{2, 3, 4, 5, 6, 7\}$ can be written as $Z = \{x \mid 2 \le x \le 7 \text{ and } x \in N\}$

(*Z* is a set such that the elements, represented by *x*, are between 2 to 7 and they are natural numbers) (Note: when a set-building notation does not include the type of numbers it is assumed $x \in \Re$ real numbers)

<u>Rational Numbers</u> (Q): - numbers that can be turned into a fraction $\frac{a}{b}$, where $a, b \in I$, and $b \neq 0$.

- include all Terminating or Repeating Decimals.
- include all Natural Numbers, Whole Numbers and Integers.
- include any perfect roots (radicals).
- a. <u>Terminating Decimals</u>: decimals that stops. Examples: 0.25

xamples:
$$0.25 = \frac{1}{4}$$
 $-0.7 = -\frac{7}{10}$

b. <u>**Repeating Decimals**</u>: - decimals that repeats in a pattern and goes on.

Examples:
$$0.3... = \frac{1}{3}$$
 $-1.\overline{7} = -\frac{16}{9}$

c. <u>Perfect Roots</u>: - radicals when evaluated will result in either Terminating or repeating decimals,

or fractions
$$\frac{a}{l}$$
, where $a, b \in I$, and $b \neq 0$.

Examples: $\sqrt{0.16} = \pm 0.4$ $\sqrt{0.111...} = \pm 0.3... = \pm \frac{1}{3}$ $\sqrt{\frac{1}{25}} = \pm \frac{1}{5}$ $\sqrt[3]{0.008} = 0.2$

To Convert a Decimal into Fraction using TI-83 Plus

Example: Convert $-0.\overline{5}$ into a fraction.

Repeat entering 5 to the edge of the screen

<u>Irrational Numbers</u> (\overline{Q}): - numbers that CANNOT be turned into a fraction $\frac{a}{b}$, where $a, b \in I$, and $b \neq 0$. - include all non-terminating, non-repeating decimals.

- include any non-perfect roots (radicals).

a. <u>Non-terminating, Non-repeating Decimals</u>: - decimals that do not repeat but go on and on.

Examples: $\pi = 3.141592654...$ 0.123 123 312 333 123 333 ...

b. <u>Non-Perfect Roots</u>: radicals when evaluated will result in Non-Terminating, Non-Repeating decimals.

Examples: $\sqrt{5} = \pm 2.236067977...$ $\sqrt{0.52} = \pm 0.7211102551...$ $\sqrt[3]{-0.38} = -0.7243156443...$

<u>Real Numbers</u> (**R**): - any numbers that can be put on a number line.

- include all natural numbers, whole numbers, integers, rational and irrational numbers.

<u>Union</u> (\cup): - the combined elements of two sets.

- for $A \cup B$, it means all elements in A or B (or in both).

Intersection (\cap): - includes all elements that are in both sets. - for $A \cap B$, it means all elements in A and B.

 $A \cup B$

Empty Set (\emptyset) : - when the set consists of no elements.

Example 1: If
$$F = \{-2, -1, 0, 1, 2, 3, 4\}$$
, $G = \{0, 1, 2\}$, and $H = \{6, 7, 8\}$, find
a. $F \cup G$ b. $F \cap G$ c. $G \cap H$

Infinity (∞): - use to denote that the patterns go on and on in a specific direction of the real number line. - positive infinity (∞) means infinity towards the right of the number line.

- negative infinity $(-\infty)$ means infinity towards the left of the number line.

$$-\infty$$
 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 $+\infty$

Open Interval: - when the boundary numbers are not included (exclusive).

- we use normal brackets for open intervals.
- on the number line, we use open circles at the endpoints.

Example: (-3, 4) means all numbers between -3 and 4 exclusively (not including -3 and 4)

$$-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6$$

<u>**Closed Interval**</u>: - when the boundary numbers are included (inclusive).

- we use square brackets for open intervals.
- on the number line, we use closed (filled in) circles at the endpoints.

Example: [-3, 4] means all numbers between -3 and 4 inclusively (including -3 and 4)

					_	_		_				
		4		2	1 (1		,	1 .		
-0	-3 -4	4 –	5 -	2 –	1 (J .	I ∡	2 2	,	+.	5 (3

Inequalities and Intervals

Notation	Meaning and Set De	escription	Graphs
> or (a, ∞)	Greater than	$\{x \mid x > a\}$	
$< $ or $(-\infty, a)$	Less than	$\{x \mid x < a\}$	
\geq or $[a,\infty)$	Greater than or equal to	$\{x \mid x \ge a\}$	
\leq or $(-\infty, a]$	Less than or equal to	$\{x \mid x \le a\}$	

Notation	Meaning and Set Description	Graphs
(b_{lower}, b_{upper})	x is between the lower and upper boundaries (exclusive). $\{x \mid b_{lower} < x < b_{upper}\}$	blower bupper
$[b_{lower}, b_{upper}]$	x is between the lower and upper boundaries (inclusive). $\{x \mid b_{lower} \le x \le b_{upper}\}$	b _{lower} b _{upper}
$(b_{lower}, b_{upper}]$	x is between the lower (open) and upper (closed) boundaries. $\{x \mid b_{lower} < x \le b_{upper}\}$	blower bupper
$[b_{lower}, b_{upper})$	x is between the lower (closed) and upper (open) boundaries. $\{x \mid b_{lower} \le x < b_{upper}\}$	blower bupper
$(-\infty, b_{lower}] \cup [b_{upper}, \infty)$	x is less than the lower boundary and x is greater than the upper boundary (inclusive). $\{x \mid x \le b_{lower} \cup x \ge b_{upper}\}$	b _{lower} b _{upper}
$(-\infty, b_{lower}) \cup (b_{upper}, \infty)$	x is less than the lower boundary and x is greater than the upper boundary (exclusive). $\{x \mid x < b_{lower} \cup x > b_{upper}\}$	blower bupper

Example 2: Express each interval in terms of inequalities (set descriptions), and then graph the intervals. a. [-4, 9) b. $(-\infty, -2) \cup [3, \infty)$

Example 3: Graph each set.

a. $(1, 8] \cap [3, 4)$

b. $(1, 8] \cup [3, 4)$

P-1 Assignment: pg. 7–10 #5, 12, 25, 31, 38 and 41; Honours: #43 **P-2 Assignment:** pg. 19–21 #34, 35, 37, 39, 41, 45, 47, 49, 53, 57 and 75; Honour: #77

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 5.

<u>P-3: Integer Exponents</u>

Integer Exponent: - an exponent that belongs in an integer set.

- an exponent indicates how many factors the base is multiplying itself.

<u>Note</u>: The exponent only applies to the immediate number, variable or bracket preceding it.

Example 1: Evaluate the followings.

a.
$$(-2)^4$$
 $(-2)^4 = (-2)(-2)(-2)(-2)$
 $(-2)^4 = 16$
b. $-2^4 = -(2)(2)(2)(2)$
 $-2^4 = -16$

Note that the exponent only applies to the immediate number preceding it and exclude the negative sign.

Laws of Exponents

Multiply Powers of the Same Base = Adding Exponents	$(a^m)(a^n) = a^{m+n}$
Divide Powers of the Same Base = Subtracting Exponents	$\frac{a^m}{a^n} = a^{m-n}$
Power Rule = Multiplying Exponents	$(a^m)^n = a^{m \times n}$
Zero Exponent = 1	$a^{0} = 1$
	$(ab)^n = a^n b^n$
Distribution of Exponent with Multiple Bases	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$
Nameting Frances at Designed at	$a^{-n}=\frac{1}{a^n}$
Negative Exponent = Reciprocal	$\frac{a^{-m}}{b^{-n}}=\frac{b^n}{a^m}$
	$(ab)^{-n} = a^{-n}b^{-n} = \frac{1}{a^nb^n}$
Distribution of Negative Exponent with Multiple Bases	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n = \frac{b^n}{a^n}$

Example 2: Simplify. Express all answers in positive exponents only.

Scientific Notation: - commonly used to state very big or very small numbers.

(1 to 9.999...) $\times 10^n$ where *n* is an integer If n < 0, then the actual number was between 0 and 1 If n > 0, then the actual number was greater than 10

Example 3: Convert the following standard notations to scientific notations or vice versa.

- a. Speed of Light = 3×10^5 km/s = 300,000 km/s (moved 5 decimal places to the right)
- c. Diameter of a Red Blood Cell = $0.000\ 007\ 5\ m = \frac{7.5 \times 10^{-6}\ m}{7.5 \times 10^{-6}\ m}$ (moved 6 decimal places to the right)
- d. 2003 US Debt = $$6,804,000,000,000 = \frac{6.804 \times 10^{12}}{1000}$ (moved 12 decimal places to the left)

Example 4: In astronomy, one light year is the distance light can travel in one year. Light has a constant speed of 3×10^5 km/s in the vacuum of space.

- a. Calculate the distance of one light year.
- b. The closest star to the Sun, Alpha Centuri, is 3.78×10^{13} km. How many light years is it to our sun?

P-3 Assignment: pg. 27–28 #9, 13, 17, 21, 27, 35, 39, 47, 49, 53, 63, 80; Honours: #82a

P-4: Rational Exponents and Radicals

<u>Radicals</u>: - the result of a number after a root operation.

<u>Radical Sign</u>: - the mathematical symbol $\sqrt{}$.

<u>Radicand</u>: - the number inside a radical sign.

<u>Index</u>: - the small number to the left of the radical sign indicating how many times a number (answer to the radical) has to multiply itself to equal to the radicand.

Example 2: A formula $v_f^2 = v_i^2 + 2ad$ can be used to find the final velocity (speed) of an accelerated object, where v_f = final velocity, v_i = initial velocity, a = acceleration, and d = distance travelled. An apple is thrown from the tall building 300 m high with an initial velocity of 6 m/s. The acceleration due to gravity is 9.81 m/s². What is the final velocity of the apple as it reaches the ground?

Solve for
$$v_f$$
:
 $v_f = ?$
 $v_f^2 = v_i^2 + 2ad$
 $v_f = \sqrt{(6)^2 + 2(9.81)(300)}$
 $v_f = \sqrt{v_f^2 + 2ad}$
 $v_f = \sqrt{36 + 5886}$
 $v_f = \sqrt{5922}$
 $v_f = 76.95 \text{ m/s}$

Example 3: Evaluate using only positive roots.

a.
$$\sqrt{36-25}$$

 $=\sqrt{11} \approx 3.31662$
b. $\sqrt{36} - \sqrt{25}$
 $=6-5 = 1$
c. $\sqrt{36 \times 25}$
 $=\sqrt{900} = 30$
d. $\sqrt{36} \times \sqrt{25}$
 $=6 \times 5 = 30$
 $\sqrt{a + b} \neq \sqrt{a} + \sqrt{b}$
 $\sqrt{a + b} \neq \sqrt{a} + \sqrt{b}$
 $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$
 $\sqrt{a - b} \neq \sqrt{a} - \sqrt{b}$
 $\sqrt{a \div b} = \sqrt{a} \div \sqrt{b}$

Example 4: Evaluate using only positive roots. Verify by using a calculator.

a.
$$5\sqrt[3]{-64} + 2\sqrt[3]{27}$$

 $= 5(-4) + 2(3) = -20 + 6$
 $\boxed{-14}$
b. $\sqrt[4]{81} - 7\sqrt[4]{16}$
 $= 3 - 7(2) = 3 - 14$
 $\boxed{-11}$
 $\boxed{4 \times \sqrt{(81)} - 7(4 \times \sqrt{16})}$
 -11

Properties of Radicals

Distribution of Radicals of the Same Index (where $a \ge 0$ and $b \ge 0$ if <i>n</i> is even)	$\sqrt[n]{ab} = (\sqrt[n]{a})(\sqrt[n]{b})$ $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
Power Rule of Radicals = Multiplying Exponents	$\sqrt[m]{\sqrt[m]{n}a} = \sqrt[(m \times n)]{a}$
Powerse Operations of Padicals and Exponents	$\sqrt[n]{a^n} = a$ (if <i>n</i> is odd)
Reverse Operations of Radicals and Exponents	$\sqrt[n]{a^n} = a $ (if <i>n</i> is even)

Entire Radicals: - radicals that have no coefficient in front of them. **Examples**: $\sqrt{52}$ and $\sqrt[3]{48}$

<u>Mixed Radicals</u>: - radicals that have coefficients in front of them. - the coefficient is the n^{th} root of the radicand's perfect n^{th} factor. Examples: $2\sqrt{13}$ and $2\sqrt[3]{6}$

To convert an entire radical to a mixed radical, find the <u>largest perfect n^{th} factor of the</u> radicand and <u>write its root as a coefficient</u> follow by the radicand factor that remains.

Prerequisites Chapter: Algebra 1 Review

Example 5: Simplify. (Convert them to mixed radicals.)

a.
$$\sqrt[3]{192x^6y^5}$$

b. $\sqrt[4]{48a^9b^4}$
c. $\frac{\sqrt{168p^7q^9}}{\sqrt{6p^2q^6}}$
f. $\sqrt{16p^2q^6}$
f. $\sqrt{16p^2q^6}$
f. $\sqrt{16p^2q^6}$
f. $\sqrt{16p^2q^6}$
f. $\sqrt{16p^2q^6}$
f. $\sqrt{162p^2q^6}$
f. $\sqrt{16p^2q^6}$
f. $\sqrt{16p^2q^6}$
f. $\sqrt{16p^2q^6}$
f. $\sqrt{16p^2q^6}$
f

Adding and Subtracting Radicals:

- Radicals can be added or subtracted *if and only if* they have the <u>same index and radicand</u>.
- Convert any entire radicals into mixed radicals first. Then, combine like terms (radicals with the same radicand) by adding or subtracting their coefficients.

Example 9: Simplify.

a.
$$\sqrt{32} - \sqrt{108} + \sqrt{27} - \sqrt{50}$$

= $4\sqrt{2} - 6\sqrt{3} + 3\sqrt{3} - 5\sqrt{2}$
= $4\sqrt{2} - 5\sqrt{2} - 6\sqrt{3} + 3\sqrt{3}$
 $-\sqrt{2} - 3\sqrt{3}$

b.
$$-3\sqrt[3]{24} + 2\sqrt[3]{40} - \sqrt[3]{375} + 3\sqrt[3]{135}$$
$$= -3(2\sqrt[3]{3}) + 2(2\sqrt[3]{5}) - 5\sqrt[3]{3} + 3(3\sqrt[3]{5})$$
$$= -6\sqrt[3]{3} + 4\sqrt[3]{5} - 5\sqrt[3]{3} + 9\sqrt[3]{5}$$
$$-11\sqrt[3]{3} + 13\sqrt[3]{5}$$

<u>Rationalization</u>: - turning radical denominator into a natural number denominator.

For
$$m < n$$
, $\frac{\sqrt[n]{a}}{\sqrt[n]{b^m}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b^m}} \times \left(\frac{\sqrt[n]{b^{(n-m)}}}{\sqrt[n]{b^{(n-m)}}}\right) = \frac{\sqrt[n]{ab^{(n-m)}}}{b}$

Example 10: Simplify.

a.
$$\sqrt{\frac{8}{3}} = \frac{\sqrt{8}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

 $= \frac{\sqrt{24}}{3} = \frac{\sqrt{4} \times \sqrt{6}}{3}$
 $\frac{2\sqrt{6}}{3}$
b. $\frac{2\sqrt[5]{4}}{\sqrt[5]{x^3}} = \frac{2\sqrt[5]{4}}{\sqrt[5]{x^3}} \times \left(\frac{\sqrt[5]{x^{(5-3)}}}{\sqrt[5]{x^{(5-3)}}}\right)$
 $= \frac{2\sqrt[5]{4}}{\sqrt[5]{x^3}} \times \left(\frac{\sqrt[5]{x^{(5-3)}}}{\sqrt[5]{x^2}}\right)$
 $= \frac{2\sqrt[5]{4}x^2}{\sqrt[5]{x^5}}$
 $\frac{2\sqrt[5]{4}x^2}{\sqrt[5]{x^5}}$

Rational Exponents

$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	The index of the radical is the denominator of the fractional exponent.
•••	denominator of the fractional exponent

Example 11: Evaluate using a calculator.

P-4 Assignment: pg. 33–35 #3, 11, 15, 17, 23, 27, 35, 39, 43, 49, 53, 57, 61, 65; Honours: #74

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 11.

P-5: Algebraic Expressions

Expressions : - mathematical sentences with no equal sign.	Example : $3x + 2$
Equations : - mathematical sentences that are equated with an equal sign.	Example : $3x + 2 = 5x + 8$
<u>Terms</u> : - are separated by an addition or subtraction sign. - each term begins with the sign preceding the variable or coeffici	ent. Numerical Coefficient
Monomial: - one term expression.	Example $5x^2$ Exponent Variable
Binomial : - two terms expression.	Example : $5x^2 + 5x$
Trinomial: - three terms expression.	Example : $x^2 + 5x + 6$

Polynomial: - many terms (more than one) expression with whole number exponents.

 $a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_1 x + a_0$ where $a_0, a_1, a_2, \dots a_n$ are real number coefficients, and n is a whole number exponents to the n^{th} degree.

Degree: - the term of a polynomial that contains the largest sum of exponents

Example: $9x^5 + (4x^7) + 3x^4$ 7th Degree Polynomial

Example 1: Fill in the table below.

Polynomial	Number of Terms	Classification	Degree	Classified by Degree
9	1	monomial	0	constant
4x	1	monomial	1	linear
9x + 2	2	binomial	1	linear
$x^2 - 4x + 2$	3	trinomial	2	quadratic
$2x^3 - 4x^2 + x + 9$	4	polynomial	3	cubic
$4x^4 - 9x + 2$	3	trinomial	4	quartic

Like Terms: - terms that have the same variables and exponents.

Examples:

 $2x^2y$ and $5x^2y$ are like terms $2x^2y$ and $5xy^2$ are NOT like terms

To Add and Subtract Polynomials:

- Combine like terms by adding or subtracting their numerical coefficients.

Example 2: Simplify.

a.
$$3x^{2} + 5x - x^{2} + 4x - 6$$

$$= \underbrace{3x^{2} + 5x - x^{2} + 4x - 6}_{2x^{2} + 9x - 6}$$
b. $(9x^{2}y^{3} + 4x^{3}y^{2}) + (3x^{3}y^{2} - 10x^{2}y^{3})$
c. $(9x^{2}y^{3} + 4x^{3}y^{2}) - (3x^{3}y^{2} - 10x^{2}y^{3})$

$$= \underbrace{9x^{2}y^{3} + 4x^{3}y^{2} + 3x^{3}y^{2} - 10x^{2}y^{3}}_{2x^{2} + 9x - 6}$$

$$= \underbrace{9x^{2}y^{3} + 4x^{3}y^{2} - 3x^{3}y^{2} + 10x^{2}y^{3}}_{2x^{2} + 9x - 6}$$

$$= \underbrace{9x^{2}y^{3} + 4x^{3}y^{2} - 3x^{3}y^{2} + 10x^{2}y^{3}}_{2x^{2} + 9x - 6}$$

(drop brackets and switch signs in the bracket that had – sign in front of it)

Multiplying Monomials with Polynomials

Example 3: Simplify.

a.
$$2x(3x^2 + 2x - 4)$$

= $2x(3x^2 + 2x - 4)$
= $6x^3 + 4x^2 - 8x$
b. $3x(5x + 4) - 4(x^2 - 3x)$
= $3x(5x + 4) - 4(x^2 - 3x)$
(only multiply
brackets right
after the
monomial)
= $15x^2 + 12x - 4x^2 + 12x$
(only multiply
brackets right
after the
monomial)
= $5a^2 - 16a + 24 - 4 - 3a^2 - 7$

Multiplying Polynomials with Polynomials

Example 4: Simplify.

a.
$$(3x + 2)(4x - 3)$$

b. $(x + 3)(2x^2 - 5x + 3)$
c. $(3x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3(x + 2)(2x + 3) - (2x - 1)(x + 3)$
c. $(3x - 4)^3$
b. $(3x - 4)^3$

Let
$$A = 2x$$
 and $B = 3$
 $(A + B)^2 = A^2 + 2AB + B^2$
 $(2x + 3)^2 = (2x)^2 + 2(2x)(3) + (3)^2$
 $= 4x^2 + 12x + 9$
 $= 4x^2 + 12x + 9$
Let $A = 3x$ and $B = 4$
 $(A - B)^3 = A^3 - 3A^2B + 3AB^2 - B^3$
 $(3x - 4)^3 = (3x)^3 - 3(3x)^2(4) + 3(3x)(4)^2 - (4)^3$
 $= 27x^3 - 108x^2 + 144x - 64$

P-5 Assignment: pg. 39-40 #17, 21, 27, 31, 33, 37, 41, 47, 57, 61; Honours: #60

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 13.

P-6: Factoring (Part 1)

Factoring: - a reverse operation of expanding (multiplying).

- in essence, we are dividing, with the exception that the factors can be polynomials.

Common Factors: - factors that are common in each term of a polynomial.

- a. Numerical GCF: Greatest Common Factor of all numerical coefficients and constant.
- **b.** Variable GCF: the lowest exponent of a particular variable.

After obtaining the GCF, use it to divide each term of the polynomial for the remaining factor.

=

Algebra 2

Prerequisites Chapter: Algebra 1 Review

c. $x^2 - 7xy + 12y^2$	Factor Pairs of 12: (1×12) (-1×-1)	2)	d. $14 - 5w - w^2$	
= (x-3y)(x-4y)	$\begin{array}{c} (1 \times 12) \\ (2 \times 6) \\ (3 \times 4) \end{array} \begin{array}{c} (-1 \times -1) \\ (-2 \times -6) \\ (-3 \times -4) \end{array}$))	= $-w^2 - 5w + 14$ Rearrange in = $-(w^2 + 5w - 14)$ Take out -1	Descending Degree. as common factor.
	(-3) + (-4) = sum of	f –7	= (-(w+7)(w-2)) (+7)	(-2) = -14 (-2) = 5
e. $3ab^2 - 3ab - 60a$			f. $x^4 + 14x^2 - 32$	(+16)(-2) = -32
$= 3a (b^2 - b - 20)$ = 3a(b+4)(b-5)	Take out GCF (+4)(-5) = -20 (+4) + (-5) = -1		$= (x^{2} + 16)(x^{2} - 2)$ Assume $x^{4} + bx^{2} + c$ as the same factor. The answer will be $(x^{2} + bx^{2})$	(+16)(-2) = -32 (+16) + (-2) = 14 e as $x^2 + bx + c$ and $(x^2) = -32$

Factoring $ax^2 + bx + c$ (Leading Coefficient is not 1, $a \neq 1$)

For factoring trinomial with the form $ax^2 + bx + c$, we will have to factor by grouping.

Example 3: Factor $6x^2 + 11x + 4$

	Factor Pairs of 24:		
$6x^2 + 11x + 4$		(1 × 24)	(-1×-24)
2		(2 × 12)	(-2×-12)
$= 6x^{2} + 3x + 8x + 4$	Split the <i>bx</i> term into two separate terms.	(3×8)	(-3×-8)
$= (6x^2 + 3x) + (8x + 4)$	Group by brackets	(4×6)	(-4×-6)
= 3x (2x+1) + 4 (2x+1)	Take out GCF for each bracket.		()
= (2x + 1)(3x + 4)	Factor by Common Bracket!	(3+8) = st	ùm of 11

Example 4: Factor completely.

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 15.

P-6: Factoring (Part 2)

Special Expressions	
Difference of Squares	$A^2 - B^2 = (A + B)(A - B)$
Perfect Trinomial Squares	$A^2 + 2AB + B^2 = (A + B)^2$
Perfect Trinomial Squares	$A^2 - 2AB + B^2 = (A - B)^2$
Sum of Cubes	$A^{3} + B^{3} = (A + B)(A^{2} - AB + B^{2})$
Difference of Cubes	$A^{3}-B^{3}=(A-B)(A^{2}+AB+B^{2})$

Example 1: Factor completely.

Perfect Trinomial Square

$$ax^2 + bx + c = (\sqrt{a}x + \sqrt{c})^2$$

 $ax^2 - bx + c = (\sqrt{a}x - \sqrt{c})^2$
where a, c are square numbers, and $b = 2(\sqrt{a})(\sqrt{c})$
 $\sqrt{9} = 3$
Example 2: Expand $(3x + 2)^2$.
 $(3x + 2)^2 = (3x + 2)(3x + 2)$
 $= 9x^2 + 6x + 6x + 4$
 $= 9x^2 + 12x + 4$
 $\sqrt{9} = 3$
 $2(\sqrt{9})(\sqrt{4}) = 12$
 $\sqrt{4} = 2$

Example 3: Factor completely.

Page 16.

Sum of Cubes	$A^{3} + B^{3} = (A + B)(A^{2} - AB + B^{2})$
Difference of Cubes	$A^{3}-B^{3}=(A-B)(A^{2}+AB+B^{2})$

Example 4: Factor completely.

a. $27x^3 + 8y^3$ Let $A^3 = 27x^3$ and $B^3 = 8y^3$ Hence, A = 3x and B = 2y $A^3 + B^3 = (A + B)(A^2 - AB + B^2)$ $27x^3 + 8y^3 = (3x + 2y)((3x)^2 - (3x)(2y) + (2y)^2)$ $= (3x + 2y)(9x^2 - 6xy + 4y^2)$ b. $9a^{3}b - 72b$ $9a^{3}b - 72b = 9b(a^{3} - 8)$ GCF = 9b Let $A^{3} = a^{3}$ and $B^{3} = 8$ Hence, A = a and B = 2 $A^{3} - B^{3} = (A - B)(A^{2} + AB + B^{2})$ $a^{3} - 8 = (a + 2)((a)^{2} + (a)(2) + (2)^{2})$ $9b(a^{3} - 8) = 9b(a + 2)(a^{2} + 2a + 4)$

Factoring Non-Polynomial Expressions

- always take out the GCF with the lowest exponents of any common variables.

- divide each term by the GCF. Be careful with fractional exponents.

Example 5: Factor completely.

a.
$$y^{\frac{4}{3}} - 5y^{\frac{1}{3}} - 24y^{-\frac{2}{3}}$$

 $= y^{-\frac{2}{3}}(y^2 - 5y - 24)$ GCF $= y^{-\frac{2}{3}}$ (lowest exponent)
 $= y^{-\frac{2}{3}}(y - 8)(y + 3)$ Factor form $x^2 + bx + c$
 $\frac{-5y^{\frac{1}{3}}}{y^{-\frac{2}{3}}} = -5y^{\frac{1}{3}-(\frac{2}{3})} = -5y$
b. $r(4r + 1)^{\frac{1}{2}} - 3(4r + 1)^{-\frac{1}{2}}$
Let $A = (4r + 1)$
 $r(4r + 1)^{\frac{1}{2}} - 3(4r + 1)^{-\frac{1}{2}} = rA^{\frac{1}{2}} - 3A^{-\frac{1}{2}}$
 $= A^{-\frac{1}{2}} [rA - 3]$ GCF $= A^{-\frac{1}{2}}$ (lowest exponent)
 $= (4r + 1)^{-\frac{1}{2}} [r(4r + 1) - 3]$ Substitute $(4r + 1)$ back into A
 $= (4r + 1)^{-\frac{1}{2}} [4r^2 + r - 3]$ Factor form $ax^2 + bx + c$
 $= (4r + 1)^{-\frac{1}{2}} (4r - 3)(r + 1)$

Factoring Cubic Polynomials by Grouping

- for cubic polynomials consists of four terms, we can *sometimes* factor them by grouping.

Example 6: Factor $x^3 - 5x^2 - 4x + 20$ completely.

 $= (x^{3} - 5x^{2}) - (4x - 20)$ $= x^{2}(x - 5) - 4(x - 5)$ $= (x - 5)(x^{2} - 4)$ switch sign! (- sign in front of bracket) Factor GCF from each group GCF = (x - 5) Factor Difference of Squares

P-6 (Part 2) Assignment: pg. 46–48 #17, 19, 21, 25, 29, 33, 47, 51, 53, 57, 61, 65, 69, 79, 93, 98a and 98c; Honours: #71, 75

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 17.

P-7: Rational Expressions

<u>Fractional Expression</u>: - a quotient of two algebraic expressions.

- the variable(s) can have negative and fractional exponents (or in radical form).

Examples:
$$\frac{2x^2+3}{x^2+4x-2}$$
 $\frac{\sqrt{x}+6}{\sqrt{x^2-4}}$ $\frac{x^{\frac{3}{2}}+2x^{\frac{1}{2}}-3x^{-\frac{1}{2}}}{x+2}$

Rational Expression: - fractional expressions with polynomials as denominator and / or numerator.

Examples:
$$\frac{2x^2+3}{x^2+4x-2}$$
 $\frac{x^3+4x^2-6x+7}{3x-1}$ $\frac{7x}{3x^2-8x+2}$

<u>Domain</u>: - all possible *x*-values from an algebraic expression.

 some algebraic expressions have a certain "no go zone". This might involve <u>not being able to</u> <u>divide by zero</u> or <u>x has to be positive because it is in an even indexed radical</u>.

Examples: $\frac{1}{x}$ Domain is $\{x \mid x \neq 0\}$ \sqrt{x} Domain is $\{x \mid x \ge 0\}$ $\frac{1}{\sqrt{x}}$ Domain is $\{x \mid x \ge 0\}$

Example 1: Find the domain of the following expressions.

a.
$$2x^2 - 4x + 7$$

There is no restriction on x
as x can be anything in the
real number set. Hence, the
domain is $x \in \Re$.
b. $\frac{x+3}{x^2 - x - 12}$
Since there is a polynomial
expression in the denominator,
we need to solve it when it is not
equal to zero by factoring to
find the domain.
 $x^2 - x - 12 \neq 0$
 $(x-3)(x+4) \neq 0$
 $x-3 \neq 0$ or $x+4 \neq 0$
Domain: $x \neq 3$ or $x \neq -4$
c. $\frac{\sqrt{x}}{2x-5}$
We need to find the domain of
the numerator (radical) as well
as the denominator (polynomial).
 $2x - 5 \neq 0$
 $x \neq \frac{5}{2}$
Combine Domain

Simplifying Rational Expressions:

- factor both the numerator and denominator and cancel out the common factors / brackets between them.

- this is similar to reducing a numerical fraction by cancelling out the common factors between the numerator and denominator.
- the final domain is the domain of the original rational expression, not the domain of the reduced form.

Examples:
$$\frac{30}{24} = \frac{6 \times 5}{6 \times 4} = \frac{5}{4}$$
 $\frac{x^2 - 6x + 9}{x^2 - 9} = \frac{(x - 3)(x - 3)}{(x - 3)(x + 3)} = \frac{(x - 3)}{(x + 3)}$ Domain: $x \neq 3$ or $x \neq -3$
Note: we cannot cancel $\frac{x - 3}{x + 3} \neq \frac{x - 3}{x + 3} \rightarrow -1$
This is because $\frac{x - 3}{x + 3}$ really means $\frac{(x - 3)}{(x + 3)}$ and we have do the parenthesis first before division.
Page 18. Copyrighted by Gabriel Tang B.Ed., B.Sc.

Example 2: Simplify the following expressions and state their domains.

a.
$$\frac{3x}{x^2 + 6x}$$

$$= \frac{3x}{x(x+6)}$$
b. $\frac{2x^2 - 7x + 3}{x^2 - 5x + 6}$

$$= \frac{3x}{x(x+6)}$$
b. $\frac{2x^2 - 7x + 3}{x^2 - 5x + 6}$

$$= \frac{(x-3)(2x-1)}{(x-2)(x-3)}$$
b. $\frac{2x^2 - 5x + 6 \neq 0}{(x-2)(x-3) \neq 0}$

$$= \frac{(x-3)(2x-1)}{(x-2)(x-3)}$$
b. $\frac{2x^2 - 5x + 6 \neq 0}{(x-2)(x-3) \neq 0}$

$$= \frac{(x-3)(2x-1)}{(x-2)(x-3)}$$

$$= \frac{(2x-1)}{(x-2)}$$
Domain: $x \neq 2$ or $x \neq 3$

Multiplying and Dividing Rational Expressions:

- much like multiplying and dividing fractions, we factor all numerators and denominators and reduce common bracket(s) / factors between them.
- for division, we must "flip" (take the reciprocal) of the fraction behind the ÷ sign.
- the final domain is the domain of both the original rational expressions, not the domain of the reduced answer.

Examples:
$$\frac{3}{5} \times \frac{10}{21} = \frac{3}{5} \times \frac{5 \times 2}{3 \times 7} = \frac{2}{7}$$
 $\frac{24}{7} \div \frac{15}{28} = \frac{24}{7} \div \frac{28}{15} = \frac{8 \times 3}{7} \times \frac{7 \times 4}{3 \times 5} = \frac{32}{5}$

Example 3: Perform the indicated operations, simplify and state their domains.

a.
$$\frac{x^{2}-1}{x^{2}+x-6} \times \frac{2x^{2}+7x+3}{2x^{2}-x-1}$$

b.
$$\frac{x^{2}+6x+9}{3x^{2}-4x-4} \div \frac{x^{2}-9}{3x^{2}+8x+4}$$

$$= \frac{(x+1)(x-1)}{(x-2)(x+3)} \times \frac{(2x+1)(x+3)}{(2x+1)(x-1)}$$

$$= \underbrace{(x+1)}_{(x-2)}$$

 $(x-2) \neq 0 \text{ or } (x+3) \neq 0$
 $(2x-1) \neq 0 \text{ or } (x-1) \neq 0$
Domain: $x \neq 2 \text{ or } x \neq -3 \text{ or } x \neq \frac{1}{2} \text{ or } x \neq 1$
b.
$$\frac{x^{2}+6x+9}{3x^{2}-4x-4} \div \frac{x^{2}-9}{3x^{2}-4x-4}$$

$$= \frac{(x+3)(x+3)}{(x-2)(x-3)} \times \frac{(3x+2)(x+2)}{(x-3)(x+3)}$$

Domain is taken from the numerator and the denominator of the fraction (3x+2) \neq 0 \text{ or } (x-2) \neq 0
 $(3x+2) \neq 0 \text{ or } (x-2) \neq 0$
 $(3x+2) \neq 0 \text{ or } (x+2) \neq 0$
Domain: $x \neq -\frac{2}{3}$, 2, -2, 3 or -3

Lowest Common Denominator (LCM) of Monomials:

- LCD of monomial coefficient, and the variable(s) with its / their highest exponent(s).

Example: LCD of $3a^2$, 5a, $6a^3$

 $LCD = 30a^3$

LCM of 3, 5, 6 = 30

Variable with Highest Exponent = a^3

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 19.

- common factor(s) (written once) along with any uncommon (leftover) factor(s).

Example: LCD of
$$x^2 - 2x - 3$$
 and $x^2 - x - 2$
Factors of $x^2 - 2x - 3 = (x - 3)(x + 1)$ and Factors of $x^2 - x - 2 = (x + 1)(x - 2)$
Common Factor Leftovers
LCD = $(x + 1)(x - 3)(x - 2)$

Adding and Subtracting Rational Expressions:

- much like adding and subtracting fractions, we first find the LCD of the denominators. Then, we convert each fraction into their equivalent fractions before adding or subtracting the numerators.
- the final domain is the domain of both the original rational expressions, not the domain of the reduced answer.

Example:
$$\frac{3}{4} + \frac{5}{6}$$
 (LCD = 12) $\frac{3 \times 3}{4 \times 3} + \frac{5 \times 2}{6 \times 2} = \frac{9}{12} + \frac{10}{12} = \frac{19}{12}$

Example 4: Perform the indicated operations, simplify and state their domains.

a.
$$\frac{5}{x+2} + \frac{3x+1}{3x+6}$$

b.
$$\frac{2x}{9x^2-4} - \frac{3x}{9x^2-12x+4}$$
 LCD = $(3x-2)(3x-2)(3x+2)$

$$= \frac{5}{x+2} + \frac{3x+1}{3(x+2)}$$
 LCD = $3(x+2)$

$$= \frac{(5)(3) + (3x+1)}{3(x+2)} = \frac{15+3x+1}{3(x+2)}$$

$$= \frac{3x+16}{3(x+2)}$$
 (x + 2) \neq 0
Domain: $x \neq -2$

$$= \frac{6x^2 - 4x - 9x^2 - 6x}{(3x-2)^2(3x+2)} = \frac{-3x^2 - 10x}{(3x-2)^2(3x+2)}$$

$$= \frac{-x(3x+10)}{(3x-2)^2(3x+2)}$$
 (3x - 2) \neq 0 or $(3x+2) \neq 0$

$$= \frac{-x(3x+10)}{(3x-2)^2(3x+2)}$$

<u>Compound Fraction</u>: - a fraction where the numerator and / or denominator themselves contain fraction(s).

Simplifying Compound Fractions:

- simplify each of the numerator and denominator into single fractions. Then, divide the numerator's fraction by the denominator's fraction.

Example: Simplify
$$\frac{1+x^{-1}}{1-x^{-1}} = \frac{\left(1+\frac{1}{x}\right)}{\left(1-\frac{1}{x}\right)} = \frac{\left(\frac{x+1}{x}\right)}{\left(\frac{x-1}{x}\right)} = \left(\frac{x+1}{x}\right) \div \left(\frac{x-1}{x}\right) = \left(\frac{x+1}{x}\right) \times \left(\frac{x}{x-1}\right) = \frac{x+1}{x-1}$$

Conjugates: - binomials that have the exact same terms by opposite signs in between.

Examples: (a+b) and (a-b) $\left(a\sqrt{b}+c\sqrt{d}\right)$ and $\left(a\sqrt{b}-c\sqrt{d}\right)$

Multiplying Conjugate Radicals:

- multiplying conjugate radicals will <u>always</u> give a <u>Rational Number</u> (radical terms would cancel out).

Example 6: Simplify
$$(\sqrt{5} + 3\sqrt{6})(\sqrt{5} - 3\sqrt{6})$$
.

$$= (\sqrt{5} + 3\sqrt{6})(\sqrt{5} - 3\sqrt{6})$$

$$= \sqrt{25} - 3\sqrt{30} + 3\sqrt{30} - 9\sqrt{36}$$
Notice the middle two radical terms always cancel out!

$$= 5 - 9(6) = -49$$

Rationalizing Binomial Radical Denominator:

- multiply the radical expression by a fraction that consists of the conjugate of the denominator over itself.

Example 7: Simplify
$$\frac{3}{5+\sqrt{7}}$$
.

$$= \frac{3}{(5+\sqrt{7})} \times \frac{(5-\sqrt{7})}{(5-\sqrt{7})} = \frac{3(5-\sqrt{7})}{25-5\sqrt{7}+5\sqrt{7}-\sqrt{49}}$$

$$= \frac{3(5-\sqrt{7})}{25-7} = \frac{3(5-\sqrt{7})}{18} = \underbrace{(5-\sqrt{7})}_{6}$$
P-7 Assignment: pg. 55–57 #9, 15, 17, 21, 25, 29, 31, 39, 45, 51, 55, 59, 77, 81 and 99; Honours: #97

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 21.