Unit 7: Patterns

6-1: Sequences

Sequence: - a list of numbers generated from a pattern.

Arithmetic Sequence: - numbers in a list are related by a common difference.

Example : 5, 8, 11, 14	$t_n, 17, \dots, t_n$ (add)	3 to the get the next term)
$t_n = a + (n-1)d$	a = value of the first term d = common difference	n = number of terms in the sequence $t_n =$ the value of the n^{th} term

Example 1: In the sequence 84, 80, 76, 72, ..., find the

a. 20^{th} term.

 $a = 84 \qquad d = -4 \qquad n = 20$ $t_{20} = 84 + (20 - 1)(-4)$ $t_{20} = 84 + (19)(-4)$ $t_{20} = 8$ b. general equation for t_n .

Example 2: A salesperson is paid \$500 per month plus \$35 per encyclopaedia sold.

- a. Find the general equation for his monthly earnings.
- b. Graph the sequence to the 20 encyclopaedias sold.
- c. How much would the salesperson earn if he sold 42 encyclopaedias in one month?
- d. Find the number of encyclopaedia sold if the earning is \$920 in a month.

<u>Page 158.</u>

<u>Geometric Sequence</u>: - numbers in a list that is related by a common ratio.

Example:3, 6, 12, 24, 48, ... t_n (multiply 2 to the get the next term) $t_n = ar^{(n-1)}$ a = value of the first termn = number of terms in the sequencer = common ration = the value of the n^{th} term

Example 3: In the sequence 700, 560, 448, 358.4, ..., find the

```
a. 15<sup>th</sup> term.
```

b. general equation for t_n .

Example 4: A tennis ball is dropped from a height of 4 m and rebound 65% of the previous height.

- a. Find the equation that describes the pattern, and graph the rebound height versus the number of bounces.
- b. To the nearest, thousandth of a metre, what height did the ball reach after the 6th bounce?
- c. How many bounces did it take for the ball to have a rebound height of less than 0.10 m?

b. After the 6^{th} bounce, the ball will have a height of t_6 .

```
t_n = (2.6)(0.65)^{(n-1)}

t_6 = (2.6)(0.65)^{(6-1)}

t_6 = (2.6)(0.65)^5

t_6 = 0.302 \text{ m}
```

Number of Rebound (<i>n</i>)	Rebound Height (t _n)
6	0.30168 m
7	0.19609 m
8	0.12746 m
9	0.08285 m

<u>**Recursive Sequence**</u>: - a sequence where the value of the next number <u>depends on the value(s) of the</u> <u>previous number(s)</u>.

c.

- all <u>arithmetic</u> and <u>geometric</u> sequences can be classified as recursive.

Generating Sequences Using TI-83 Plus Calculator.

Example 5: Use the graphing calculator in SEQUENCE mode to calculate t_{20} .

a. 5, 8, 11, 14, 17, ...

b. 3, 6, 12, 24, 48, ...

<u>6-1 Assignment</u>: pg. 264 – 265 #1 to 10

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 161.

6-2: Modelling Using Sequences

Graphing Sequences Using TI-83 Plus Calculator.

We can write

 $t_n = 2(t_{n-1}) + 1$

Maintenance Level: - where the sequence levels off on a graph.

Page 162.

Example 1: Given $t_1 = 6$ and $t_n = \frac{1}{2}(t_{n-1}) + 6$, and using the graphing calculator

- a. Find the first five terms of the sequence.
- b. Graph the first thirty-five of the sequence.
- c. Find the maintenance level of the sequence

- Example 2: Due to higher than expected fish stocks at Sylvan Lake, the government decided to limit the recreational fishing quota to 20% of the fish available. In the meantime, scientists predict that the fish stock at Sylvan Lake will increase by 675 every year. The current fish population at Sylvan Lake is approximately at 4500.
 - a. Complete the table below.
 - b. Define a recursive sequence to be entered into the calculator.
 - c. Using the calculator, determine the fish stock at Sylvan Lake at the beginning of the 10^{th} year.
 - d. Graph the fish stock population versus time. What is the maintenance level of Sylvan Lake's fish population?

\$	2	l	•

Time (Beginning of the Year)	Current Population	Fishing Quota	Natural Population Increase	Population Remaining
0	4500	900	675	4275
1	4275	855	675	4095
2	4095	819	675	3951
3	3951	790	675	3836
4	3836	767	675	3744
5	3744	749	675	3670

Half-life: - the amount of time needed to decrease the previous amount by half.

Example 3: A drug is taken every 3 hours. The dosage of this drug is 500 mg. The half-life of this drug is

- 1.5 hours. Complete the table below and answer the followings
- a. What fraction of the initial dosage remains in the body 3 hours later (before the second dose was taken)?
- b. Define a recursive sequence to be entered into the calculator by the number of doses.
- c. Using the calculator, determine the amount of at the beginning of the second day of treatment.
- d. Graph the level of drug in the body versus doses. What is the maintenance level of this drug?
- e. Set up an EXCEL spreadsheet that will yield the same result as the calculator.

Time (hours)	Number of Dosage (<i>n</i>)	Amount of Drug Remains from Last Period (mg)	Amount of Drug Excreted (mg)	Amount of Drug Taken (mg)	Amount of Drug Remains for the Period (mg)
0	1	0	0	500	500
1.5	1	500	250	0	250
3.0	2	250	125	500	625
4.5	2	625	312.5	0	312.5
6.0	3	312.5	156.25	500	656.25
7.5	3	656.25	328.125	0	328.125
9.0	4	328.125	164.0625	500	664.0625
10.5	4	664.0625	332.03125	0	332.03125
12.0	5	332.03125	166.015625	500	666.015625
13.5	5	666.015625	333.0078125	0	333.0078125
15.0	6	333.0078125	166.5039063	500	666.5039063

Unit 7: Patterns

Applied Math 30

		A	В	С	D	E
	1	Dosages (n)	Previous Amount Remaining (mg)	Amount Excreted (mg)	Amount of Drugs Taken (mg)	Final Amount Remaining (mg)
	2	1	0	=0.25*B2	=500	=B2-C2+D2
	3	=A2+1	=E2	=0.75*B3	=500	=B3-C3+D3
	4	=A3+1	=E3	=0.75*B4	=500	=B4-C4+D4
	5	=A4+1	=E4	=0.75*B5	=500	=B5-C5+D5
	6	=A5+1	=E5	=0.75*B6	=500	=B6-C6+D6
	7	=A6+1	=E6	=0.75*B7	=500	=B7-C7+D7
	8	=A7+1	=E7	=0.75*B8	=500	=B8-C8+D8
	9	=A8+1	=E8	=0.75*89	=500	=B9-C9+D9
	10	=A9+1	=E9	=0.75*B10	=500	=B10-C10+D10
	11	=A10+1	=E10	=0.75*B11	=500	=B11-C11+D11
	12	=A11+1	=E11	=0.75*B12	=500	=B12-C12+D12
	13	=A12+1	=E12	=0.75*B13	=500	=B13-C13+D13
	14	=A13+1	=E13	=0.75*B14	=500	=B14-C14+D14
	15	=A14+1	=E14	=0.75*B15	=500	=B15-C15+D15
	16	=A15+1	=E15	=0.75*B16	=500	=B16-C16+D16
	17	=A16+1	=E16	=0.75*B17	=500	=B17-C17+D17
	18	=A17+1	=E17	=0.75*B18	=500	=B18-C18+D18
	19	=A18+1	=E18	=0.75*B19	=500	=B19-C19+D19
	20	=A19+1	=E19	=0.75*B20	=500	=B20-C20+D20
	21	=A20+1	=E20	=0.75*B21	=500	=B21-C21+D21
- 1	00					

Page 166.

- Example 4: In a fish stock recovery program, the government introduced 60 tonnes of fish into Lake Winnipeg every year. However, 35% of Lake Winnipeg's water flows into Lake Winnipegosis. There are presently 360 tonnes of fish in Lake Winnipeg and 95 tonnes of fish in Lake Winnipegosis.
 - a. Fill in the table below.
 - b. Define the sequences for the graphing calculator to determine the amount of fish in each lake over any given years.
 - c. Calculate the amount of fish in each lake 15 years from now.
 - d. Determine the maintenance levels of each lake and the amount of time needed to reach them.

a.	Lake Winnipeg				L	ake Winnipeg	josis
Time (years)	Beginning Amount (Tonne)	Amount Lost (Tonne)	Amount Added (Tonne)	Final Amount (Tonne)	Beginning Amount (Tonne)	Amount Added (Tonne)	Final Amount (Tonne)
0	360	126	60	294	95	126	221
1	294	102.9	60	251.1	221	102.9	323.9
2	251.1	87.885	60	223.215	323.9	87.885	411.785
3	223.215	78.12525	60	205.08975	411.785	78.12525	489.91025
4	205.08975	71.7814125	60	193.3083375	489.91025	71.7814125	561.6916625

<u>6-3: Introduction to Fractals</u>

<u>Fractals</u>: - geometric figures that can be generated by <u>REPEATING the same process many times</u>.

<u>Self-Similarity Fractals</u>: - where a <u>Part</u> of a fractal is <u>Geometrically Similar to the Whole Fractal</u>. - this can be applied to simple geometry generations or <u>ZOOMING in and out</u> <u>of a diagram.</u>

Iteration: - a step where the sequence pattern repeats itself.

Many natural phenomena that may seem random at first actually have a self-repeating pattern. We can model these patterns using fractals. The following are some beginning iterations and their many iterations after.

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 168.

Bay, Maryland.

The S&P 500 Index at different time scales: (a) 1 year, (b) 5 years, and (c) 10 years.

Mountains generated by a fractal computer program.

Fractals in the Human Body: (a) Brain, (b) Lungs, and (c) Kidney.

Fractal Generated Cloud

Broccoli, a Natural Fractal

Lightning, Nature's Powerful Fractal

Unit 7: Patterns

<u>The Mandelbrot Set</u>: Moving from top left to bottom right, each successive diagram illustrates the last image by zooming in a particular area.

Maps showing the Coastlines of the British Isle and the English Channel. The first map (top left corner) is an approximation (original diagram). As the fractal iterations are being generated (moving from top left to bottom right), the coastlines appear more and more detail.

Page 170.

Example 1: Draw the next two iterations of the following fractals and indicate their dimensions.

<u>6-3 Assignment</u>: **6-3 Worksheet: Drawing Fractals**

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 173.

6-3 Worksheet: Drawing Fractals

- 1. Draw the next two iterations of each of the following fractal. Label their dimensions
- a. <u>Hat Fractal</u>

Answers

1a. <u>Hat Fractals</u>

Iteration 2 (s = 1 cm)

1b. Four-Circles Fractals

Iteration 2 (r = 1 cm)

1b. Crosses

Iteration 2 (s = 1 cm)

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Iteration 3 (r = 0.5 cm)

Page 175.

6-4: Some Properties of Fractals

After a few iterations from the original, we can determine the pattern of the fractals. Thereby, predicting the properties of the new iterations.

Example 1: Using the tree fractal underneath, fill out the table below.

Original

Iteration 1

	Number of New Branches	Length of the New Branch (cm)	Total New Length Added (cm)	Total Length (cm)
Original	1	4	4	4
Iteration 1	2	2	4	8
Iteration 2	4	1	4	12
Iteration 3	8	0.5	4	16

a. Write a sequence that will relate the total length of the fractals at any iterations (*n*).

The total lengths form an arithmetic sequence starting at a = 4 cm with a common difference, d = 4 cm.

u(20)

84

Applied Math 30

Original

Example 2: Using the fractal underneath, fill out the table below.

Iteration 1

Iteration 2

	Number of Shaded Squares	Length of each Shaded Square (cm)	Area of each Shaded Square (cm ²)	Total Shaded Area (cm ²)
Original	$\times 4 (1)$	6	36 \ ÷ 9	$36 \times \frac{4}{9}$
Iteration 1	4	2	4	16
Iteration 2	× 4 16	$\frac{2}{3} = 0.66$	$\frac{4}{9} = 0.44 \div 9$	$\frac{64}{9} = 7.11.$
Iteration 3	× 4 64	$\frac{2}{9} = 0.22$	$\frac{4}{81} = 0.04938272$	$\frac{256}{9} = 3.1604938$

a. Write a sequence that will relate the total shaded area of the fractals at any iterations (*n*).

The total shaded area forms a geometric sequence.

Common Ratio,
$$r = \frac{4}{9}$$

 $r = \frac{16}{36} = 0.44... = \frac{4}{9}$ $r = \frac{7.11...}{16} = 0.44... = \frac{4}{9}$

Common Ratio Verify with Original TABLE $(r=\frac{4}{9})$ Iteration 2nd **GRAPH** Ploti Nlot2 Plot3 น(ท) \mathcal{D} nMin=0 🕇 36 16 7.1 Û ິບ(ກ)∎4∕9∗u(ກ−1) 123556 11111 u(nMin)∎{36} 4047 .ບ(ກ)= 243 .6 27746 v(»Min)= .ພ(ກ)= ∞=Ø **Original Total Shaded** Area Copyrighted by Gabriel Tang B.Ed., B.Sc.

b. Find the total shaded area at iteration 10.

The total length at Iteration 10 is 0.0108 cm².

c. What is the limit of the total shaded area?

As the diagrams above would indicate, the total shaded area will become smaller and smaller until it is close to 0 cm².

d. What is the limit of the total **non-shaded** area?

On the other hand, the total non-shaded area will become bigger and bigger until it is close to 36 cm^2 (the shaded area in the original diagram).

<u>6-4 Assignment</u> pg. 289 – 291 #1 to 4

Page 177.