5-1: Collecting and Plotting Periodic Data

<u>Periodic Data</u>: - data that contains cycles which repeat at a regular interval.

Example 1: Classify and explain whether the graphs below are periodic.

<u>Sinusoidal Data</u>: - periodic data, when graphed, looks like a Sine Wave (the graph of an equation using the Sine function).

Example 2: Using the graphing calculator in **DEGREE Mode**, complete the following table for the equation $y = \sin \theta$. Grpah the equation between -90° to 720° .

θ	У	θ	у	θ	у	θ	У
0 °	0	105°	0.96593	195°	-0.25882	285°	-0.96593
15°	0.25882	120°	0.86603	210°	-0.5	300°	-0.86603
30°	0.5	135°	0.70711	225°	-0.70711	315°	-0.70711
45°	0.70711	150°	0.5	240°	-0.86603	330°	-0.5
60°	0.86603	165°	0.25882	255°	-0.70711	345°	-0.25882
75°	0.96593	180°	0	270°	-1	360°	0
90°	1					•	•

Period: - the length or the time it takes to complete one cycle of the wave

<u>Amplitude</u>: - the height of the wave from the median line (middle line) of the wave.

Example 3: A particular beach has various depth of water because of high and low tides. The depths of the water in metres and the times of the day is recorded.

Time	Midnight	2:00 AM	4:00 AM	6:00 AM	8:00 AM	10:00 AM
Depth (m)	3.5	4.25	5.75	6.5	5.75	4.25
Time	12:00 PM	2:00 PM	4:00 PM	6:00 PM	8:00 PM	10:00 PM
Depth (m)	3.5	4.25	5.75	6.5	5.75	4.25

a. Graph the data using a graphing calculator. Label all scales and axis.

b. Describe the pattern of the graph by stating its period, amplitude, maximum and minimum.

c. What is the depth of the water at 4:30 PM? How many cycles has it been since midnight of the same day?

Water Depth versus Time of Day

<u>5-1 Assignment</u>: pg. 216 – 217 #1 to 7

5-2: Radian Measures and Sine Curves

<u>Radians</u>: - a unit (rad) to measure the size of an angle.

$$\pi \operatorname{rad} = 180^{\circ} \quad \text{OR} \quad \frac{\pi}{180} \operatorname{rad} = 1^{\circ}$$

Divide both Sides by 180

Converting Degree to Radian Using Graphing Calculator.

Converting Radian to Degree Using Graphing Calculator.

θ

Step 1: Set Mode to Degree.

MODE

1.25

Step 3: Specify Radian Unit and Convert

Example 1: Convert the following into radian.

9 561 En9 01234567

a. 90° $1^{\circ} = \frac{\pi}{180}$ rad $90^{\circ} = 90 \times \frac{\pi}{180}$ rad $= \frac{90\pi}{180}$ rad $90^{\circ} = \frac{\pi}{2}$ rad ≈ 1.57 rad $90^{\circ} = \frac{\pi}{2}$ rad ≈ 1.57 rad $10^{\circ} = \frac{\pi}{180}$ rad $10^{\circ} = \frac{\pi}{180}$ rad $10^{\circ} = \frac{\pi}{180}$ rad $120^{\circ} = 120 \times \frac{\pi}{180}$ rad $= \frac{120\pi}{180}$ rad $120^{\circ} = \frac{2\pi}{3}$ rad ≈ 2.09 rad

Applied Math 30

c.
$$135^{\circ}$$

 $1^{\circ} = \frac{\pi}{180}$ rad
 $135^{\circ} = 135 \times \frac{\pi}{180}$ rad $= \frac{135\pi}{180}$ rad
 $135^{\circ} = \frac{3\pi}{4}$ rad ≈ 2.36 rad

e. 240°

240° 4.188790205 330° 5.759586532

135°

225°

2.35619449

3.926990817

$$1^{\circ} = \frac{\pi}{180} \text{ rad}$$

225° = 225 × $\frac{\pi}{180}$ rad = $\frac{225\pi}{180}$ rad
225° = $\frac{5\pi}{4}$ rad ≈ 3.93 rad

d. 225°

$$1^{\circ} = \frac{\pi}{180}$$
 rad
 $330^{\circ} = 330 \times \frac{\pi}{180}$ rad $= \frac{330\pi}{180}$ rad
 $330^{\circ} = \frac{11\pi}{6}$ rad ≈ 5.76 rad

Example 2: Convert the following into degree.

e. 1.25 rad

f. 7.94 rad

- Example 3: Draw $y = \sin \theta$ for $-360^{\circ} \le \theta \le 360^{\circ}$ in Degree mode and $-2\pi \le \theta \le 2\pi$ in Radian mode. What are the maximum and minimum coordinates for both graphs?
 - a. Find the value of sin (120°) and other values of θ that produce the same value of sin (120°). b. Find the value of sin $\binom{7\pi}{7\pi}$ and other values of θ that produce the same value of sin $\binom{7\pi}{7\pi}$
 - b. Find the value of $\sin\left(\frac{7\pi}{4}\right)$ and other values of θ that produce the same value of $\sin\left(\frac{7\pi}{4}\right)$

Graph 1: $y = \sin \theta$ for $-360^{\circ} \le \theta \le 360^{\circ}$

Graph 2: $y = \sin \theta$ for $-2\pi \le \theta \le 2\pi$

b. Since we are given *y*-value to find other angles (θ), we have to run the INTERSECT function with the graphing calculator after entering $Y_2 = \sin\left(\frac{7\pi}{4}\right)$.

5-2 Assignment: 5-2 Worksheet: Radian Measures and Sine Curves

5-2 Worksheet: Radian Measures and Sine Curve

1.	Convert the follow	ving from degre	ees to radians.	Express the ansy	wer in terms	of π.
	a. 30°	b. 45°	c. 60°	d. 150°	e. 180°	f. 210°
	g. 270°	h. 300°	i. 315°	j. 360°	k. 390°	1. 405°

2. Convert the following from degrees to radians. Express answers in two decimal places.
a. 100°
b. 225°
c. 57.3°
d. -125°
e. -65°
f. 150°
g. 30°

3. Convert the following from radians to degrees.

a.
$$\frac{\pi}{2}$$
 rad b. $\frac{3\pi}{4}$ rad c. $-\frac{2\pi}{3}$ rad d. $\frac{7\pi}{6}$ rad e. $\frac{\pi}{4}$ rad f. $-\frac{3\pi}{2}$ rad g. 2π rad h. $-\frac{5\pi}{3}$ rad i. $\frac{5\pi}{4}$ rad j. $\frac{\pi}{6}$ rad k. $-\frac{11\pi}{6}$ rad

- 4. Convert the following from radians to degrees. Express answers to 1 decimal place.
 a. 2 rad
 b. -5 rad
 c. 3.2 rad
 d. 1.8 rad
 e. -0.7 rad
 f. 6.7 rad
- 5. Find the value of $\sin 30^{\circ}$ and other values of θ that give the same value of $\sin 30^{\circ}$ for $-360^{\circ} \le \theta \le 360^{\circ}$.
- 6. Find the value of $\sin\left(\frac{\pi}{3}\right)$ and other values of θ that give the same value of $\sin\left(\frac{\pi}{3}\right)$ for $-2\pi \le \theta \le 2\pi$.
- 7. Find the value of $\sin 240^\circ$ and other values of θ that give the same value of $\sin 240^\circ$ for $-360^\circ \le \theta \le 360^\circ$.

8. Find the value of
$$\sin\left(\frac{11\pi}{6}\right)$$
 and other values of θ that give the same value of $\sin\left(\frac{11\pi}{6}\right)$ for $-2\pi \le \theta \le 2\pi$.

Answers

1 a.
$$\frac{\pi}{6}$$
 rad b. $\frac{\pi}{4}$ rad c. $\frac{\pi}{3}$ rad d. $\frac{5\pi}{6}$ rad e. π rad f. $\frac{7\pi}{6}$ rad
g. $\frac{3\pi}{2}$ rad h. $\frac{5\pi}{3}$ rad i. $\frac{7\pi}{4}$ rad j. 2π rad k. $\frac{13\pi}{6}$ rad l. $\frac{9\pi}{4}$ rad
2 a. 1.75 rad b. 3.93 rad c. 1.00 rad d. -2.18 rad e. -1.13 rad f. 2.62 rad g. 0.52 rad
3 a. 90° b. 135° c. -120° d. 210° e. 45° f. -270°
g. 360° h. -300° i. 225° j. 30° k. -330°
4 a. 114.6° b. -286.5° c. 183.3° d. 103.1° e. -40.1° f. 383.9°
5. $\sin 30^\circ = 0.5$, at -330° , -210° , 150°
6. $\sin\left(\frac{\pi}{3}\right) = 0.86603$, at $-\frac{5\pi}{3}$, $-\frac{4\pi}{3}$, $\frac{2\pi}{3}$
7. $\sin 240^\circ = -0.86603$, at -120° , -60° , 300°
8. $\sin\left(\frac{11\pi}{6}\right) = -0.5$, at $-\frac{5\pi}{6}$, $-\frac{\pi}{6}$, $\frac{7\pi}{6}$

5-3: Fitting Sine Curves to Data

Recall finding an equation from a list of data, we have to use the <u>**REGRESSION**</u> function of the graphing calculator.

2001	Day Number	Hour of Sunrise	2001	Day Number	Hour of Sunrise
Jan 1	1	8.77	July 1	183	4.20
Feb 1	32	8.20	Aug 1	214	4.63
Mar 1	60	7.30	Sept 1	245	5.54
Apr 1	91	6.13	Oct 1	275	6.66
May 1	121	5.08	Nov 1	306	7.78
June 1	153	4.35	Dec 1	335	8.54

Example 1: The following is the hour of sunrise for Calgary at the beginning of each month in 2001.

Conversion of <u>12-hour Clock</u> to <u>Decimal Time</u>:

6:26 AM =
$$6\frac{26}{60}$$
 = 6.43 hour 8:41 PM = 20:41 (24 hour time) = $20\frac{41}{60}$ = 20.683 hour

- a. Graph the data above and obtain an equation from your graphing calculator. Label your scales and your mode used.
- b. Explain parameters a, b, c, d in terms of the data above.
- c. Use your equation to calculate the hour of sunrise for May 14, 2001.
- d. On what date did the sunrise the earliest?
- e. How many days out of the year 2001 did the sun rise before 7:30 AM?

7. Graph Regression Equation along with Scatter Plot (A Good Fit!)

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 145.

e. Number of Days Sun Rose before 7:30 AM (7.5 hrs)

5-3 Assignment: pg. 229 - 232 #1 to 6

5-4: The Characteristics of $y = a \sin(bx + c) + d$

Example 1: Graph $y = \sin x$ in DEGREE mode along with each of the following equations. Use the specified WINDOW setting.

Example 2: Find the equation of the following graph in radians.

Amplitude = 2 Vertical Displacement = 1 up Range: $-1 \le y \le 3$ Period = 14 rad Period = $\frac{2\pi}{b}$ $b = \frac{2\pi \text{ rad}}{\text{Period}} = \frac{2\pi \text{ rad}}{14 \text{ rad}}$ $b = \frac{\pi}{7}$ Horizontal Translation = $\frac{c}{b}$ $c = \text{Horizontal Displacement} \times b = 5 \text{ rad} \times \frac{\pi}{7}$ $c = \frac{5\pi}{7}$

a	b	С	d	Maximum	Minimum
2	$\frac{\pi}{7}$	$\frac{5\pi}{7}$	1	3	-1

Example 3: Graph $y = 3 \sin (3x + \frac{\pi}{2}) + 2$ for $-2\pi \le x \le 2\pi$. Select and write down the proper scales for your WINDOW settings. What are the values of a, b, c and d? How are they related to the amplitude, horizontal translation, vertical displacement and the range?

a		b	C		d	Maximum	Minimum	
3		3	$\frac{\pi}{2}$	- - -	2	5	-1	
Amplitude =	3	Ve	rtical Dis	placeme	nt = 2 up	Range: $-1 \le y \le 5$		
Period = $\frac{2\pi}{b} = \frac{2\pi}{b}$	$\frac{2\pi}{3}$	$Period = \frac{2\pi}{3}$	rad]	Horizontal Displa Horizontal Displa	accement = $\frac{c}{b} = \frac{\left(\frac{x}{2}\right)^2}{\frac{x}{6}}$ cement = $\frac{\pi}{6}$ rad	$\frac{\pi}{2} \frac{1}{3} = \frac{\pi}{6}$ to the left	

5-4 Assignment: pg. 238 – 240 #1 to 8

5-5: Applications of Sinusoidal Data

Sometimes, a data table is not provided for the sketch of a scatter plot. But instead, a description of the periodic pattern is given instead. In these cases, it is very important to <u>determine the features of the</u> <u>graph</u> (amplitude, period, horizontal displacement, and vertical displacement). They will be used to generate the parameters needed for the basic sinusoidal equation, $y = a \sin(bx + c) + d$.

- Example 1: A mechanical pendulum has a height of 3 m off the ground. When it is swung to the highest point, its height is 7 m off the ground. It makes 15 complete swing per minute, and the starting point is on the right side of the rest position.
 - a. What is the period of the pendulum?
 - b. Draw a graph to describe the height of the pendulum versus time for 3 complete cycles.
 - c. Explain all the features of the graph and determine the equation of height in terms of time.
 - d. Find the height of the pendulum at 10.3 seconds.
 - e. At what time(s) will the height of the pendulum be at 5.5 m during the first complete cycle?

a. Frequency = 15 swings / min =
$$\frac{15 \text{ swings}}{60 \text{ seconds}} = \frac{1 \text{ swing}}{4 \text{ seconds}}$$

Period = $\frac{\text{time in seconds}}{1 \text{ cycle(or swing)}} = \frac{4 \text{ seconds}}{1 \text{ swing}}$
Period = 4 sec / cycle

b.

Height of Pendulum Swings versus Time

Applied Math 30

c. Characteristics of the Graph

Amplitude = a = 2 m (how far the height is varied from one side of the swing to the rest position) Vertical Displacement = d = 5 m (the height between the rest position and one side of the swing) Range: $3 \text{ m} \le h \le 7$ m (the minimum and maximum heights of the pendulum)

Period = 4 seconds (time to complete one full swing) Horizontal Translation = -3 second (right) = $\frac{c}{b}$

Period
$$=\frac{2\pi}{b}$$
 $b = \frac{2\pi \operatorname{rad}}{\operatorname{Period}} = \frac{2\pi}{4}$ $b = \frac{\pi}{2}$ $c = \operatorname{Horizontal Displacement} \times b = -3 \times \frac{\pi}{2}$ $c = -\frac{3\pi}{2}$
OR
Period $=\frac{360^{\circ}}{b}$ $b = \frac{360^{\circ}}{\operatorname{Period}} = \frac{360^{\circ}}{4}$ $b = 90^{\circ}$ $c = \operatorname{Horizontal Displacement} \times b = -3 \times 90^{\circ}$ $c = -270^{\circ}$

a	b	с	d
2	$\frac{\pi}{2}$ or 90°	$-\frac{3\pi}{2}$ or -270°	5

In Radian Mode: $h = 2 \sin(\frac{\pi}{2}t - \frac{3\pi}{2}) + 5$ In Degree Mode: $h = 2 \sin(90t - 270) + 5$

d. Height at 10.3 seconds

- 1. Enter equation in Degree Mode
- 2. Run TRACE.

e. When will the pendulum reach 5.5 m?

- 1. Enter equation in Degree Mode
- 2. Enter Y₂ equation as 5.5

Unit 6 Project: Sunrise and Sunset

Purpose: To analyze the patterns of sunrise and sunset times throughout a year, and to compare sunrise and sunset times at different locations around the world.

Procedure:

1. Select three cities from the list below, one from the Northern Hemisphere (above the Tropic of Cancer 23°N), another from the Southern Hemisphere (below the Tropic of Capricorn 23°S), and the last one from the equatorial region (between the Tropic of Cancer and Capricorn).

Northern Hemisphere									
City, Country	Longitude (Degree [°] , Minute ')	Latitude (Degree [°] , Minute ')	Time Zone (Hours East/West of Greenwich)						
Calgary, Canada	W 114° 09'	N 51° 10'	7 Hours West						
San Francisco, USA	W 122° 18'	N 37° 40'	8 Hours West						
Houston, USA	W 95° 25'	N 29° 45'	6 Hours West						
Beijing, China	E 116° 26'	N 39° 55'	8 Hours East						
Berlin, Germany	E 13° 25'	N 52° 32'	1 Hour East						
Rome, Italy	E 12° 30'	N 41° 53'	1 Hour East						
Moscow, Russia	E 37° 45'	N 55° 36'	3 Hours East						
Yellowknife, Canada	W 114° 29'	N 62° 30'	7 Hours West						
Tokyo, Japan	E 139° 45'	N 35° 40'	9 Hours East						
Toronto, Canada	W 79° 46'	N 43° 42'	5 Hours West						

Southern Hemisphere									
City, Country	Longitude (Degree °, Minute ')	Latitude (Degree [°] , Minute ')	Time Zone (Hours East/West of Greenwich)						
Falkland Island, UK	W 60° 00'	S 52° 30'	4 Hours West						
Wellington, New Zealand	E 174° 47'	S 41° 17'	12 Hours East						
Santiago, Chile	W 70° 40'	S 33° 30'	4 Hours West						
Buenos Aires, Argentina	W 58° 30'	S 34° 40'	3 Hours West						
Cape Town, South Africa	E 18° 28'	S 33° 56'	2 Hours East						
Sydney, Australia	E 151° 10'	S 33° 55'	10 Hours East						
Melbourne, Australia	E 144° 58'	S 37° 45'	10 Hours East						
Faraday, Antarctica	W 64° 16'	S 65° 15'	4 Hours West						
Johannesburg, S. Africa	E 28° 02'	S 26° 10'	2 Hours East						
Perth, Australia	E 115° 49'	S 31° 58'	8 Hours East						

Equatorial Region									
City, Country	Longitude (Degree °, Minute ')	Latitude (Degree [°] , Minute ')	Time Zone (Hours East/West of Greenwich)						
Hong Kong, China	E 114º 10'	N 22° 10'	8 Hours East						
Singapore, Singapore	E 103° 40'	N 1° 20'	7 Hours East						
Honolulu, USA	W 157° 50'	N 21° 19'	10 Hours West						
Kingston, Jamaica	W 76° 48'	N 17º 58'	5 Hours West						
Manila, Philippines	E 120° 58'	N 14° 37'	8 Hours East						
Lima, Peru	W 78° 40'	S 12° 06'	5 Hours West						
Darwin, Australia	E 130° 44'	S 12° 23'	8 Hours East						
Mexico City, Mexico	W 99° 10'	N 19° 25'	6 Hours West						
Galapagos Isles, Ecuador	W 90° 00'	S 0° 05'	6 Hours West						
Colombo, Sri Lanka	E 79° 52'	N 6° 55'	6 Hours East						

Applied Math 30

- 2. Go to the U.S. Naval Observatory Astronomical Applications Department Data Service's web site http://aa.usno.navy.mil/data/docs/RS_OneYear.html and print out the table for the sunrise and sunset times of the current year for your selected cities. Make sure you print out your tables in Landscape. If you have to save your files on your desktop first, open them with Microsoft WORDS, select the entire table, change the font size to 8, and change the Page Set-up to Landscape before printing. Attach these printouts to your final report.
- 3. Copy and complete three different tables as shown below. The first one is for sunrise times, the next one is for sunset times, and the last one is for amount of daylight. Convert all calendar dates (the 1st of each month) to day numbers, and all 24-hour times to decimal times. Sample conversions must be included. Explain and show how you would calculate the amount of daylight.

	Sunrise Times										
Data	Day	City 1:		City 2:		City 3:					
Date	Number	24-hour Time	Decimal Time	24-hour Time	Decimal Time	24-hour Time	Decimal Time				
Jan 1	1										
Feb 1	32										
Mar 1	60										
Apr 1											
May 1											
June 1											
July 1											
Aug 1											
Sept 1											
Oct 1											
Nov 1											
Dec 1											

	Sunset Times											
Data	Day	City 1:		City 2:		City 3:						
Date	Number	24-hour Time	Decimal Time	24-hour Time	Decimal Time	24-hour Time	Decimal Time					
Jan 1	1											
Feb 1	32											
Mar 1	60											
Apr 1												
May 1												
June 1												
July 1												
Aug 1												
Sept 1												
Oct 1												
Nov 1												
Dec 1												

Amount of Sunlight (in Hours)											
Date	Day Number	City 1:	City 2:	City 3:							
Jan 1	1										
Feb 1	32										
Mar 1	60										
Apr 1											
May 1											
June 1											
July 1											
Aug 1											
Sept 1											
Oct 1											
Nov 1											
Dec 1											

- 4. Enter the sunrise data table into your graphing calculator. Select the appropriate WINDOW settings for your graph. Be sure to set the MODE to RADIAN. Draw out your graph on a fine graphing paper. Write out a title along with all the proper labeling on your axis and sine curves. Run Sinusoidal Regressions on all three curves. Include them on your graph paper. Select the appropriate variables.
- 5. Repeat Step 4 with the sunset, and the amount of sunlight tables.
- 6. What are the range, amplitude, phase shift, vertical displacement, and period of each of the sine curve in the amount of sunlight graph?
- 7. What do the parameters a, b, c, d represents for each of the three graphs?
- 8. Define and Explain Longitude, Latitude, Time Zone from Greenwich, Summer and Winter Solstices, Spring and Fall (Autumn) Equinoxes.
- 9. For each of the three cities, on which calendar dates has the most and least amount of sunlight? Locate and label them on your graph. How do these dates relate to some of the terms you define in the previous step?
- 10. When (calendar dates) did the spring and autumn equinoxes occur for each of the three cities? Locate and label them on your graph. Which feature(s) and/or parameter(s) from the Sinusoidal Regression Equation, $y = a \sin (bx + c) + d$, corresponds with the definition of equinox? Explain.
- 11. Explain why the northern and southern hemispheric cities you have chosen have bigger ranges of sunlight amount annually compare to that of the equatorial city. Include any diagrams you may come across in your research to help illustrate your explanations.
- 12. <u>Bonus Marks:</u> Determine the longitudes, latitudes, and time zone for the Greenwich Meridian at the Equator, the North Pole, and the South Pole. Go to the same web site in Step 2. Print the tables. Determine the amount of sunlight for the 21st of each month. Explain your results. Again, you may use diagrams to enhance your explanations.

Note:

- 1. All graphs drawn must be properly labelled.
- 2. Please read carefully and do not omit any steps in the Procedure. All sample calculations, explanations, diagrams must be shown clearly.
- 3. Include all printouts from the Internet with your final report.
- 4. Students can work together to discuss the project, but they should each have their own numbers to work with and do their own calculations. Students who copied from each other will end up sharing the mark. Let's say the mark was 70% and two students were involved in copying each other's work. They each get 35%.
- 5. Late Project handed in one day after the due date is counted as 30% off the total mark. Project handed in two days and later will not be marked.

Due Date: _____

<u>Sample Tables of Calgary's 2001 Sunrise and Sunset Times</u> (From the U.S. Naval Observatory Astronomical Applications Department Data Service's Web Site) http://aa.usno.navy.mil/data/docs/RS_OneYear.html

o , Location: W114 09, N51 10					CALGARY, CANADA Rise and Set for the Sun for 2001 Zome: Th Nort of Greenwich					Astronomical Applications Dept. U. S. Naval Observatory Washington, DC 20392-5420				
	Jan	Feb	Mor	ànr	Maxz	Jime	July	à nơ	Sent	0.0	Notz	Dec		
Dav	Rise Set	Rise Set	Rise Set	Rise Set	Rise Set	Rise Set	Rise Set	Rise Set						
-	hm hm	hm hm	hm hm	hm hm	hm hm	hm hm	hm hm	hm hm						
01	0841 1640	0813 1728	0721 1818	0612 1910	0509 1959	0427 2043	0426 2055	0502 2023	0550 1922	0638 1814	0730 1710	0819 1632		
02	0840 1642	0812 1730	0719 1820	0609 1912	0507 2001	0426 2044	0426 2055	0504 2021	0552 1919	0639 1812	0732 1708	0820 1632		
03	0840 1643	0810 1731	0716 1821	0607 1913	0505 2003	0425 2045	0427 2054	0505 2019	0553 1917	0641 1809	0733 1706	0822 1631		
04	0840 1644	0809 1733	0714 1823	0605 1915	0504 2004	0424 2046	0428 2054	0507 2018	0555 1915	0642 1807	0735 1705	0823 1631		
05	0840 1645	0807 1735	0712 1825	0603 1917	0502 2006	0424 2047	0429 2053	0508 2016	0556 1913	0644 1805	0737 1703	0824 1630		
06	0839 1646	0805 1737	0710 1827	0601 1918	0500 2007	0423 2048	0430 2053	0510 2014	0558 1911	0646 1803	0739 1701	0825 1630		
07	0839 1648	0804 1739	0708 1828	0558 1920	0458 2009	0423 2049	0431 2052	0511 2012	0600 1908	0647 1800	0740 1700	0826 1630		
08	0839 1649	0802 1740	0706 1830	0556 1922	0457 2010	0422 2049	0432 2051	0513 2011	0601 1906	0649 1758	0742 1658	0828 1630		
09	0838 1650	0800 1742	0703 1832	0554 1923	0455 2012	0422 2050	0432 2051	0514 2009	0603 1904	0651 1756	0744 1657	0829 1629		
10	0837 1652	0758 1744	0701 1833	0552 1925	0453 2013	0422 2051	0433 2050	0516 2007	0604 1902	0652 1754	0745 1655	0830 1629		
11	0837 1653	0757 1746	0659 1835	0550 1927	0452 2015	0421 2052	0435 2049	0517 2005	0606 1859	0654 1752	0747 1654	0831 1629		
12	0836 1654	0755 1748	0657 1837	0547 1928	0450 2017	0421 2052	0436 2048	0519 2003	0607 1857	0656 1750	0749 1652	0832 1629		
13	0835 1656	0753 1750	0654 1838	0545 1930	0449 2018	0421 2053	0437 2047	0520 2001	0609 1855	0657 1747	0751 1651	0833 1629		
14	0835 1657	0751 1751	0652 1840	0543 1931	0447 2020	0421 2053	0438 2046	0522 1959	0611 1852	0659 1745	0752 1649	0834 1629		
15	0834 1659	0749 1753	0650 1842	0541 1933	0446 2021	0421 2054	0439 2045	0523 1957	0612 1850	0701 1743	0754 1648	0834 1629		
16	0833 1701	0747 1755	0648 1844	0539 1935	0444 2022	0421 2054	0440 2044	0525 1955	0614 1848	0702 1741	0756 1647	0835 1630		
17	0832 1702	0745 1757	0645 1845	0537 1936	0443 2024	0421 2055	0441 2043	0527 1953	0615 1846	0704 1739	0757 1645	0836 1630		
18	0831 1704	0743 1758	0643 1847	0535 1938	0442 2025	0421 2055	0443 2042	0528 1951	0617 1843	0706 1737	0759 1644	0837 1630		
19	0830 1705	0741 1800	0641 1849	0533 1940	0440 2027	0421 2055	0444 2041	0530 1949	0618 1841	0707 1735	0801 1643	0837 1631		
20	0829 1707	0739 1802	0639 1850	0531 1941	0439 2028	0421 2056	0445 2040	0531 1947	0620 1839	0709 1733	0802 1642	0838 1631		
21	0828 1709	0737 1804	0636 1852	0528 1943	0438 2030	0421 2056	0447 2039	0533 1945	0622 1836	0711 1731	0804 1641	0838 1631		
22	0827 1710	0735 1806	0634 1854	0526 1945	0436 2031	0421 2056	0448 2037	0534 1943	0623 1834	0712 1729	0805 1640	0839 1632		
23	0826 1712	0733 1807	0632 1855	0524 1946	0435 2032	0422 2056	0449 2036	0536 1941	0625 1832	0714 1727	0807 1639	0839 1633		
24	0824 1714	0731 1809	0630 1857	0522 1948	0434 2034	0422 2056	0451 2035	0538 1939	0626 1830	0716 1725	0809 1638	0840 1633		
25	0823 1715	0729 1811	0627 1859	0520 1950	0433 2035	0422 2056	0452 2033	0539 1937	0628 1827	0718 1723	0810 1637	0840 1634		
26	0822 1717	0727 1813	0625 1900	0518 1951	0432 2036	0423 2056	0453 2032	0541 1935	0630 1825	0719 1721	0812 1636	0840 1635		
27	0821 1719	0725 1814	0623 1902	0517 1953	0431 2037	0423 2056	0455 2031	0542 1933	0631 1823	0721 1719	0813 1635	0840 1635		
28	0819 1721	0723 1816	0621 1903	0515 1954	0430 2039	0424 2056	0456 2029	0544 1930	0633 1821	0723 1717	0815 1634	0841 1636		
29	0818 1722		0618 1905	0513 1956	0429 2040	U424 2056	0458 2028	0545 1928	0634 1818	0725 1715	0816 1634	0841 1637		
30	0816 1724		0616 1907	0511 1958	0428 2041	0425 2055	0459 2026	0547 1926	0636 1816	0726 1713	0817 1633	0841 1638		
31	0815 1726		0614 1908		0427 2042		0501 2024	0549 1924		0728 1712		0841 1639		

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 157.