Semester 2 Chemistry Final Exam – Review Notes

Chapter 7: The Mole and Chemical Composition

- Key Terms and Definitions
- > Average Atomic Mass (Calculations)
- Calculating with Mass, Moles, Molar Mass, and Number of Particles (Atoms or Molecules) using Avogadro's Number
- ➤ Calculate % Compositions using Molar Mass or Total Mass and Molecular Formula
- Find Molecular Formula given Molar Mass and Empirical Formula and vice versa
- > Determine Empirical Formula given % Compositions
- ➤ Determine Molecular Formula given % Compositions and Molar Mass

Chapter 8: Chemical Equations and Reactions

- ➤ Key Terms and Definitions
- > Physical Change versus Chemical Change; Physical Properties versus Chemical Properties
- > Five Evidences of a Chemical Change
- ➤ Identify Five Types of Chemical Reactions
- ➤ Chemical Word Equation and Chemical Equation (Predicting Products and their states; Balancing Chemical Equations)
- > Use Activity Series to Predict whether there will be a reaction (Single Replacement)
- ➤ Use Solubility Table to Predict Precipitation

Chapter 9: Stoichiometry

- Key Terms and Definitions
- Mole Ratios
- > Gravimetric Stoichiometry Calculations
- ➤ % Yield and %Error
- > Excess and Limiting Reactants and their Calculations

Chapter 10: Causes of Change

- Key Terms and Definitions
- ➤ Heat, Work, Energy and Enthalpy
- \blacktriangleright Heat Related to Physical Change (Kinetic Temperature vs. Potential Phase) and Calculations ($q = mc_P\Delta T$ and $q = nC\Delta T$)
- Specific Heat
- Enthalpy Related to Chemical Potential Change and Calculations ($\Delta H = n\Delta H_{f, \text{comb, rxn}}$)
- Potential Energy Diagrams of Endothermic and Exothermic Change
- Molar Enthalpy of Reaction, Combustion and Formation
- Theoretical Calculation of Molar Enthalpy of Reaction (Hess's Law and $\Delta H_{\text{rxn}} = \Sigma H_{\text{products}} \Sigma H_{\text{reactants}}$)
- > Experimental Calculation of Molar Enthalpy of Reaction (Calorimetry Heat Lost = Heat Gained)
- ➤ Law of Conservation of Energy

Chapter 11: States of Matter and Intermolecular Forces

- ➤ Key Terms and Definitions
- ➤ How Kinetic Molecular Theory Describes Three States of Matter
- Phase Changes
- Intermolecular Forces (Ion-Dipole, London Dispersion, Dipole-Dipole, and Hydrogen Bond)
- ➤ How Polarity of a Molecule affects Intermolecular Forces
- > How Intermolecular Forces affect Physical Properties such as Boiling and Melting Points. Solubility
- Properties of Water (Surface Tension, Capillary Action, Ice Crystal Geometry, Density of Ice)
- Vapour Pressure and Temperature, Volatile Substance, Normal Melting and Boiling Point
- > Interpreting Phase Diagram (plus Critical and Triple Point)

Chapter 12: Gases

- Key Terms and Definitions
- ➤ Properties of Gases and the Kinetic Molecular Model (Assumptions) of Gases
- Pressure and converting between its units (kPa, atm, mm Hg and torr)
- Gas Laws and calculations (Boyle, Guy-Lussac, Charles, Avogadro, and Combined Gas Law)
- ➤ Ideal Gas Law and calculation of mass and molar mass
- ➤ Ideal Gas versus Real Gas
- Dalton's Partial Pressure
- > Graham's Law of Effusion and calculation
- Gas Stoichiometry

Chapter 13: Solutions

- ➤ Key Terms and Definitions
- ➤ Solution, Solute and Solvent of various Phases
- Suspensions, Colloid and Solution
- Precipitation and Crystallization, Filtration and Distillation
- Molarity Calculations, ppm Calculations, Preparing a Solution
- ➤ Solution Stoichiometry
- Dilution
- Dissociation of Ionic Solute vs. Hydration of Molecular Solute
- "Like Dissolves Like"
- Various Levels of Solubilities (Miscible, Partially Miscible, and Immiscible)
- Various Levels of Concentrations (Unsaturated, Saturated and Supersaturated Solutions)
- Solubility Table
- ➤ Calculating Solubility and using a Solubility Graph
- Factors affecting Solubility of Gas Solutes and Solid Solutes
- Conductivities in Solutions (Strong Electrolytes, Weak Electrolytes and Non-electrolytes)
- Colligative Properties (Boiling Point Elevation and Freezing Point Depression)
- Surfactant, Emulsion, Soap and Detergent

Chapter 15: Acids and Bases

- Key Terms and Definitions
- Physical and Chemical Properties of Acids and Bases
- > Arrhenius Definitions of Acids and Bases
- Brønsted-Lowry Definitions of Acids and Bases
- Conjugate Acids and Conjugate Bases
- Strong and Weak Acids (Relative Strengths of Acids and Bases)
- > Strong and Weak Bases
- Nomenclature of Acids and Bases
- > Major Species of Strong and Weak Acids and Bases
- Monoprotic, Diprotic and Polyprotic Acids, Amphoteric Substances
- Acidity, Basicity, pH and pOH Calculations
- Autoionization of Water and Calculations $(K_w = [H_3O^+][OH^-])$
- ▶ pH and pOH calculations of Strong Acids and Strong Bases)
- ➤ Acid and Base Indicators
- Acid and Base Neutralization, Stoichiometry of Acid and Base Neutralization
- > Titration, Titration Procedure, pH Curve, Stoichiometric (Equivalence) Point and End Point

Things you can do to Review:

- 1. Look over your Quizzes. Note the type of questions you got wrong. Identify the type of mistakes. Did you not understand the concepts, or it was a silly calculation error? If you do not understand a concept, go to the notes and look over the examples.
- 2. Go through the multiple-choice questions at the end of each chapter. The answers to those are online. Do the practice chapter test I have been handing out at the end of each unit.
- 3. Do the following **Extra Review Questions** at the very back of the textbook.

Moles and Chemical Composition (pg. 859–862 #1, 2, 8, 10, 14, 22, 28, 32, 35, 38, 48, 49, 54, 58, 70, 79, 81, 84, 87, 88) **Stoichiometry** (pg. 862–863 #1, 3 to 7)

Causes of Change – Thermochemistry (pg. 863–864 #1 to 4, 7, 12)

Gases (pg. 865 –870 #1 to 5, 8, 11, 23, 27, 30, 38, 41, 50, 52, 55, 74, 80, 82, 83, 90, 93, 104)

Solutions (pg. 870-871 #1, 8 to 11, 17; redo Dilution and Solubility Worksheet in Chapter 13 Notes)

Answer to Extra Review Questions:

Moles and Chemical Composition (pg. 859-862)

1.	1300 g	2. 4.0 mol	8.	1.5×10^{23} molecules	10	. 1170 g	14.	3.59×10^{22}	mole	cules
22.	163.3 g	28. 84.46 g/m	d 32.	85.00 g/mol	35	. 152.10 g/mol	38.	158.18 g/m	ol	
48.	52.55%Ba; 10.72%	%N; 36.73%O	49.	43.85% H ₂ O	54	(a) 41.8 g	(b)	1.18 mol		
70.	KClO ₂	79. C ₆ H ₈ O ₇	81.	NiO	84.	$O_3C_3N_3Cl_3$	87.	$C_4H_8O_4$	88.	C_3H_6

Stoichiometry (pg. 862–863)											
2. 6.7 g	3. (2	a) 2.38 g	(b)	1.78 g	4. ((a) 2 mol	(b) 1 mol	(c) (0.125 mol		
5. (a) 0.379 mol	(b)	0.758 mol	(c)	126 g	6.	4.41 g	7. (a) CO	(b)	38 mL	(c)	412 mL
Causes of Change – Thermochemistry (pg. 863–864)											
1. −180 kJ	2.	3600 J	3.	570 K	4.	890.2 kJ	7. 66.4 kJ	12.	0.14 kJ		
Gases (pg. 865-870)											
1. 177 kPa	2.	1330 mmHg	3.	0.75 atm	4.	76 kPa	5. 0.9813 atm	8.	1.4999 atm		
11. 1 L	23.	40 kPa	27.	(a) 260 K	(b)	−11°C	30. 6.9 L	38.	36°C		
41. 2.6 atm	50.	32.0 g/mol	52.	3.98 atm	55.	105 L	74. (a) 15 g	(b)	2.22 g	(c)	0.364 g
80. 162 g/mol	82.	235 m/s	83.	81 g/mol	90.	2.24 L	93. 18.0 g				
104. (a) 0.50 mol	(b)	0.75 mol	(c)	17 L							
Solutions (pg. 870–8	71)										
1. 0.1249 mol/L	8.	343 g	9.	1140 g	10.	0.143 mol	11. (a) 132.2 g	(b)	4.003 mol/L	17.	d,a,b,c
Acids and Bases (pg. 872–873)											
1. acidic		basic	3.	acidic		4. bas	sic	5.	0.35 mol/L		
6. (a) $1 \times 10^{-8} \text{ mol/L}$				$5 \times 10^{-7} \mathrm{M}$		8. pH		10.	pH = 12		
12. $1 \times 10^{-4} \text{ mol/L}$				$3 \times 10^{-2} \mathrm{M}$			$3 \times 10^{-13} \text{ M}$				
18. (a) $2 \times 10^{-4} \mathrm{M}$	(b)	$5 \times 10^{-11} \mathrm{M}$	20.	(a) 1×10^{-3}]	M	(b) 5 ×	$10^{-4} \mathrm{M}$	21.	0.0067 M		