UNIT 4: THE MOLE AND CHEMICAL COMPOSITION

Chapter 7: The Mole and Chemical Composition

7.1 & 7.2: Avogadro's Number and Molar Conversion & Relative Atomic Mass and Chemical Formulas

<u>Mole</u> (mol): - a group of atoms or molecules numbered 6.022 × 10^{23} (*Avogadro's Number*, N_A)

Examples: 1 mol of carbon (C) = 6.022×10^{23} carbon atoms = 12.01 g (same as the amu) 1 mol of fluorine (F₂) = 6.022×10^{23} fluorine molecules = 38.00 g (include subscripts with amu)

Example 1: Find the number of molecules in 3.50 moles of platinum.

$$1 \text{ mol Pt} = 6.022 \times 10^{23} \text{ Pt atoms}$$
$$3.50 \text{ mol} \times \frac{6.022 \times 10^{23} \text{ atoms}}{1 \text{ mol}} = 2.11 \times 10^{24} \text{ atoms of Pt}$$

Example 2: How many moles of sucrose are there if there are 3.54×10^{25} molecules of $C_{12}H_{22}O_{11}$?

$$3.54 \times 10^{25} \text{ molecules} \times \frac{1 \text{ mol}}{6.022 \times 10^{23} \text{ molecules}} = 58.8 \text{ mol of } C_{12}H_{22}O_{11}$$

Example 3: Find the number of Br⁻ ion in 0.65 mol of MgBr₂.

1 mol MgBr₂ = 6.022×10^{23} MgBr₂ formula units

 $0.65 \text{ mol} \times \frac{6.022 \times 10^{23} \text{ units}}{1 \text{ mol}} \times \frac{2 \text{ Br}^{-} \text{ ion}}{1 \text{ MgBr}_2 \text{ unit}} = \frac{7.8 \times 10^{23} \text{ Br}^{-} \text{ ions}}{7.8 \times 10^{23} \text{ Br}^{-} \text{ ions}}$

Molar Mass (g/mol): - sometimes refer to as <u>formula mass</u>, <u>molecular weight</u>, is the mass per one mole of atoms or molecules.

- molar mass of a mono-atomic element is the same as the atomic mass.
- molar mass of a compound, diatomic element, or polyatomic element is the same as the combine atomic masses of all atoms in the molecule. (Be careful counting number of atoms of a polyatomic ion in parenthesis.)

Example 4: Find the molar mass of the following.

a. potassium
b. phosphorus (P₄)
C. glucose (C₆H₁₂O₆)
C₆H₁₂O₆ =
$$(6 \times 12.01) + (12 \times 1.01) + (6 \times 16.00)$$

C₆H₁₂O₆ = 180.18 g/mol
c. glucose (C₆H₁₂O₆)
C₆H₁₂O₆ = 180.18 g/mol
c. glucose (C₆H₁₂O₆)
C₆H₁₂O₆ = 180.18 g/mol
e. iron (III) nitrite – Fe(NO₂)₃
Fe(NO₂)₃ = $55.85 + (3 \times 14.01) + (6 \times 16.00)$
Fe(NO₂)₃ = 193.88 g/mol

Page 72 .

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Converting Between Mass and Number of Particles:

- 1. Find the Molar Mass (in g/mol).
- 2. Set up a <u>Conversion Factor</u> between <u>Molar Mass</u> and the <u>Avogadro's Number</u> and Solve.

Example 5: Calculate the mass of 7.50×10^{23} molecules of sulphur (S₈).

$$S_8 = 8 \times 32.07 \text{ g/mol} = 256.56 \text{ g/mol} \Rightarrow 256.56 \text{ g of } S_8 = 1 \text{ mol } S_8 = 6.022 \times 10^{23} \text{ S}_8 \text{ molecules}$$

 $7.50 \times 10^{23} \text{ molecules} \times \frac{256.56 \text{ g}}{6.022 \times 10^{23} \text{ molecules}} = 320 \text{ g of } S_8$

Example 6: Determine the number of phosphorus <u>*atoms*</u> in 60.0 g of solid phosphorus (P₄).

 $P_4 = 4 \times 30.97 \text{ g/mol} = 123.88 \text{ g/mol} \rightarrow 123.88 \text{ g of } P_4 = 1 \text{ mol } P_4 = 6.022 \times 10^{23} P_4 \text{ molecules}$

There are <u>four phosphorus atoms</u> in one molecular unit of P₄.

$$60.0 \text{ g} \times \frac{6.022 \times 10^{23} \text{ molecules}}{123.88 \text{ g}} \times \frac{4 \text{ P atoms}}{1 \text{ P}_4 \text{ molecule}} = 1.17 \times 10^{24} \text{ phosphorus atoms}$$

Example 7: Determine the number of Na^+ ion in 92.3 g of sodium phosphate – Na_3PO_4 .

Na₃PO₄ = (3 × 22.99) + 30.97 + (4 × 16.00) = 163.94 g/mol → 163.94 g of Na₃PO₄ = 1 mol Na₃PO₄ = 6.022×10^{23} Na₃PO₄ formula units

There are <u>three Na⁺ ions</u> in one formula unit of Na₃PO₄.

92.3 g × $\frac{6.022 \times 10^{23} \text{ units}}{163.94 \text{ g}}$ × $\frac{3 \text{ Na}^+ \text{ ions}}{1 \text{ Na}_3 \text{PO}_4 \text{ units}}$ = $1.02 \times 10^{24} \text{ Na}^+ \text{ ions}$

Converting between Mass and Moles: (need to find Molar Mass first!)			
Moles (mol) = Mola	Mass (g) ar Mass (g/mol)	$n=rac{m}{M}$	
n = moles	m = mass	M = Molar mass	

Example 8: Calculate the number of moles for 20.0 g of ethanol.

Ethanol = C₂H₅OH = 2(12.01) + 6(1.01) + 16.00 M = 46.08 g/mol $n = \frac{m}{M} = \frac{20.0 \text{ g}}{46.08 \text{ g/mol}}$

Example 9: Determine the mass of 0.852 mol of aluminum carbonate

Aluminum carbonate =
$$Al_2(CO_3)_3 = 2(26.98) + 3(12.01) + 9(16.00)$$

 $M = 233.99$ g/mol
 $n = \frac{m}{M}$ $m = nM = (0.852 \text{ mol})(233.99 \text{ g/mol})$ $m = 199$ g

Unit 4: The Mole and Chemical Composition

Atomic Mass: - sometimes called atomic weight.

- the mass of the atom in atomic mass unit (amu).
- 1 amu = exactly one-twelfth the mass of one carbon-12 atom $\approx 1.67 \times 10^{-27}$ kg.

<u>Average Atomic Mass</u>: - Average Mass of an atom and its isotopes after accounting their proportions of abundance (as stated on the Periodic Table of Elements).

<u>Relative Abundance</u>: - the relative proportion of various isotopes of an element.

<u>Relative Percentage Abundance</u>: - the relative proportion of various isotopes of an element in percentage.

Average Atomic Mass = (Relative Abundance of Isotope A)(Mass Number of Isotope A) + (Relative Abundance of Isotope B)(Mass Number of Isotope B) + (Relative Abundance of Isotope C)(Mass Number of Isotope C) + ...

Example 10: Iron has three natural isotopes. If ⁵⁶Fe and ⁵⁷Fe have relative percentage of abundance at 91.754% and 2.401% respectively, and the rest is ⁵⁴Fe, calculate the average atomic mass of iron?

% abundance of 54 Fe = 100% - 91.754% - 2.401% = **5.845%** Average amu of Iron = (0.05845)(54) + (0.91754)(56) + (0.02401)(57) 5.845% of Mass Number 56 91.754% of Mass Number 56 2.401% of Mass Number 57 Average amu of Iron = **55.91 amu**

Assignment

7.1 pg. 229 #1 to 5 (Practice); pg. 231 #1 to 4 (Practice); pg. 232 #1 to 3 (Practice); pg. 233 # 1 to 13
7.2 pg. 239-240 #1 to 4 (Practice); pg. 236 #1 and 2 (Practice); pg. 240 #1, 3 to 12, 14 to 16

7.3: Formulas and Percentage Composition

<u>Percentage Composition</u>: - also called <u>mass percent</u> or <u>percentage mass</u>.

- it is the mass percentage of each element in a compound.

Page 74 .

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Example 1: Calculate the mass percentage of sodium chromate.

Na₂CrO₄ M = 161.98 g/molAssume we have 161.98 g (1 mole) of Na₂CrO₄, there are 2 moles of Na, 1 mole of Cr and 4 moles of O: % Na = $\frac{(2 \text{ mol})(22.99 \text{ g/mol})}{161.98 \text{ g}} \times 100\% = 28.38622052\%$ % Cr = $\frac{(1 \text{ mol})(52.00 \text{ g/mol})}{161.98 \text{ g}} \times 100\% = 32.10272873\%$ % O = $\frac{(4 \text{ mol})(16.00 \text{ g/mol})}{161.98 \text{ g}} \times 100\% = 39.51105075\%$ % O = 39.51%

Empirical Formula: - the simplest ratio between the elements in a chemical formula.

Molecular Formula: - the actual chemical formula of a compound.

Note: Knowing the mass percentages of a compound allow us to find the empirical formula. To know the molecular formula, we must also know the molar mass.

Example 2: A compound has an empirical formula of CH₃N has a molar mass of 116.12 g/mol. What is the molecular formula of the compound?

Empirical Formula = CH_3N (29.05 g/mol)	Actual Molar Mass =	116.12 g/mol ~ 1		
Empirical Formula – $CH31V$ (29.05 g/mor)	Emprical Molar Mass	29.05 g/moł		
Molecular Formula = Empirical Formula \times 4 = (CH ₃ N) \times 4				
$Molecular Formula = C_4 H_{12} N_4$				

Example 3: Cobalt (II) nitrate is a hydrate with a chemical formula of $Co(NO_3)_2 \bullet xH_2O$. When the 2.45 g of hydrate is heated, 1.54 g of residual is left behind. Determine the number of hydrate unit for cobalt (II) nitrate.

Mass of Co(NO₃)₂ = 1.54 g

$$n = \frac{1.54 \text{ g}}{182.95 \text{ g/mol}} = 0.0084176004 \text{ mol Co(NO_3)}_2$$
 $n = \frac{0.91 \text{ g}}{18.02 \text{ g/mol}} = 0.0504994451 \text{ mol H}_2\text{O}$
 $\frac{n_{\text{H}_2\text{O}}}{n_{\text{Co(NO}_3)_2}} = \frac{0.0504994451 \text{ mol H}_2\text{O}}{0.0084176004 \text{ mol Co(NO}_3)_2} \approx \frac{6 \text{ mol H}_2\text{O}}{1 \text{ mol Co(NO}_3)_2}$
Molecular Formula = Co(NO₃)₂ • 6 H₂O

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Page 75.

Unit 4: The Mole and Chemical Composition

Example 4: Vitamin C has a molar mass of 176.14 g/mol and contains carbon, hydrogen, and oxygen atoms. If the % mass of carbon and oxygen are 40.91% and 54.50% respectively, determine the empirical and molecular formula of vitamin C.

% C = 40.91%% O = 54.50% % H = 100% - 40.91% - 54.50% = 4.59%Assume 100 g of Vitamin C. Then, there are $m_{\rm C} = 100 \text{ g} \times 40.91\% = 40.91 \text{ g}$ $m_{\rm O} = 100 \text{ g} \times 54.50\% = 54.50 \text{ g}$ $m_{\rm H} = 100 \text{ g} \times 4.59\% = 4.59 \text{ g}$ $n_{\rm C} = \frac{40.91\,{\rm g}}{12.01\,{\rm g/mol}} = 3.40632806\,{\rm mol}_{\rm C}$ $n_{\rm H} = \frac{4.59\,{\rm g}}{1.008\,{\rm g/mol}} = 4.553571429\,{\rm mol}_{\rm H}$ $n_{\rm O} = \frac{54.50 \,\mathrm{g}}{16.00 \,\mathrm{g/mol}} = 3.40625 \,\mathrm{mol}_{\rm O}$ $\frac{n_{\rm C}}{n_{\rm O}} = \frac{3.40632806 \text{ mol C}}{3.40625 \text{ mol O}} \approx \frac{1 \text{ mol C}}{1 \text{ mol O}} \qquad \frac{n_{\rm H}}{n_{\rm O}} = \frac{4.553571429 \text{ mol H}}{3.40625 \text{ mol O}} \approx 1.33 = \frac{4 \text{ mol H}}{3 \text{ mol O}}$ $n_{\rm C} : n_{\rm O} = 1 : 1 \quad \textcircled{Combine Ratios} \quad n_{\rm H} : n_{\rm O} = 4 : 3$ $\frac{\text{Actual Molar Mass}}{\text{Emprical Molar Mass}} = \frac{176.14 \text{ g/mol}}{88.06 \text{ g/mol}} = 2$ Empirical Formula = $C_3H_4O_3$ (88.06 g/mol) Molecular Formula = Empirical Formula $\times 2$ Molecular Formula = $C_6H_8O_6$ OR Another Method may be used where the Actual Molar Mass becomes the Mass of Vitamin used. Then, the Mole of each Atom is calculated to determine the Molecular Formula first. $n_{\rm C} = \frac{40.91\% \times 176.14\,\text{g}}{12.01\,\text{g/mol}} \approx 6.00\,\text{mol}_{\rm C}$ $n_{\rm H} = \frac{4.59\% \times 176.14\,\text{g}}{1.01\,\text{g/mol}} \approx 8.00\,\text{mol}_{\rm H}$ $n_{\rm O} = \frac{54.50\% \times 176.14\,\text{g}}{16.00\,\text{g/mol}} \approx 6.00\,\text{mol}_{\rm O}$ <u>Molecular Formula</u> (C₆H₈O₆) will be found first, then the Empirical Formula (C₃H₄O₃) will be stated.

> <u>Assignment</u> 7.3 pg. 243 #1 to 4 (Practice); pg. 25 #1 to 3 (Practice); pg. 248 #1 to 5 (Practice); pg. 248 #1 to 10 Chapter 7 Review pg. 251–254 #19 to 66