UNIT 4: THE MOLE AND CHEMICAL COMPOSITION

Chapter 7: The Mole and Chemical Composition

7.1 \& 7.2: Avogadro's Number and Molar Conversion \& Relative Atomic Mass and Chemical Formulas

Mole (mol): - a group of atoms or molecules numbered $6.022 \times \mathbf{1 0}^{\mathbf{2 3}}$ (Avogadro's Number, N_{A})
Examples: 1 mol of carbon $(\mathrm{C})=6.022 \times 10^{23}$ carbon atoms $=12.01 \mathrm{~g}$ (same as the amu)
1 mol of fluorine $\left(\mathrm{F}_{2}\right)=6.022 \times 10^{23}$ fluorine molecules $=38.00 \mathrm{~g}$ (include subscripts with amu)
Example 1: Find the number of molecules in 3.50 moles of platinum.

$$
\begin{gathered}
1 \mathrm{~mol} \mathrm{Pt}=6.022 \times 10^{23} \mathrm{Pt} \text { atoms } \\
3.50 \mathrm{~mol} \times \frac{6.022 \times 10^{23} \text { atoms }}{1 \mathrm{met}}=\frac{2.11 \times 10^{24} \text { atoms of } \mathrm{Pt}}{}
\end{gathered}
$$

Example 2: How many moles of sucrose are there if there are 3.54×10^{25} molecules of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?

$$
1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=6.022 \times 10^{23} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \text { molecules }
$$

$$
3.54 \times 10^{25} \text { molecules } \times \frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { motecutes }}=58.8 \mathrm{~mol} \text { of } \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}
$$

Example 3: Find the number of Br^{-}ion in 0.65 mol of MgBr_{2}.

$$
\begin{gathered}
1 \mathrm{~mol} \mathrm{MgBr} 2=6.022 \times 10^{23} \mathrm{MgBr}_{2} \text { formula units } \\
0.65 \mathrm{mel} \times \frac{6.022 \times 10^{23} \text { units }}{1 \mathrm{mel}} \times \frac{2 \mathrm{Br}^{-} \text {ion }}{1 \mathrm{MgBr}_{2} \text { unit }}=7.8 \times \mathbf{1 0}^{23} \mathrm{Br}^{-} \text {ions }
\end{gathered}
$$

$\underline{\text { Molar Mass (} \mathbf{g} / \mathbf{m o l} \text {): - sometimes refer to as formula mass, molecular weight, is the mass per one mole }}$ of atoms or molecules.

- molar mass of a mono-atomic element is the same as the atomic mass.
- molar mass of a compound, diatomic element, or polyatomic element is the same as the combine atomic masses of all atoms in the molecule. (Be careful counting number of atoms of a polyatomic ion in parenthesis.)

Example 4: Find the molar mass of the following.

b. phosphorus $\left(\mathrm{P}_{4}\right)$

$$
\begin{array}{r}
\mathrm{P}_{4}=4 \times 30.97 \mathrm{~g} / \mathrm{mol} \\
\mathrm{P}_{4}=\mathbf{1 2 3 . 8 8} \mathrm{g} / \mathbf{m o l}
\end{array}
$$

c. glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$

$$
\begin{gathered}
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=(6 \times 12.01)+(12 \times 1.01)+(6 \times 16.00) \\
\mathrm{C}_{6} \mathrm{H}_{\mathbf{1 2}} \mathrm{O}_{\mathbf{6}}=\mathbf{1 8 0 . 1 8} \mathbf{g} / \mathbf{m o l}
\end{gathered}
$$

d. sodium chromate $-\mathrm{Na}_{2} \mathrm{CrO}_{4}$

$$
\text { e. iron (III) nitrite }-\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{3}
$$

$$
\mathrm{Na}_{2} \mathrm{CrO}_{4}=(2 \times 22.99)+52.00+(4 \times 16.00)
$$

$$
\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{3}=55.85+(3 \times 14.01)+(6 \times 16.00)
$$

$$
\mathrm{Na}_{2} \mathrm{CrO}_{4}=161.98 \mathrm{~g} / \mathrm{mol}
$$

$$
\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{3}=193.88 \mathrm{~g} / \mathrm{mol}
$$

Converting Between Mass and Number of Particles:

1. Find the Molar Mass (in g/mol).
2. Set up a Conversion Factor between Molar Mass and the Avogadro's Number and Solve.

Example 5: Calculate the mass of 7.50×10^{23} molecules of sulphur $\left(\mathrm{S}_{8}\right)$.

$$
\begin{aligned}
\mathrm{S}_{8}=8 & \times 32.07 \mathrm{~g} / \mathrm{mol}=256.56 \mathrm{~g} / \mathrm{mol} \rightarrow 256.56 \mathrm{~g} \text { of } \mathrm{S}_{8}=1 \mathrm{~mol} \mathrm{~S}_{8}=6.022 \times 10^{23} \mathrm{~S}_{8} \text { molecules } \\
& 7.50 \times 10^{23} \text { molecules } \times \frac{256.56 \mathrm{~g}}{6.022 \times 10^{23} \text { melecules }}=320 \mathrm{~g} \text { of S}
\end{aligned}
$$

Example 6: Determine the number of phosphorus atoms in 60.0 g of solid phosphorus $\left(\mathrm{P}_{4}\right)$.

$$
\mathrm{P}_{4}=4 \times 30.97 \mathrm{~g} / \mathrm{mol}=123.88 \mathrm{~g} / \mathrm{mol} \rightarrow 123.88 \mathrm{~g} \text { of } \mathrm{P}_{4}=1 \mathrm{~mol} \mathrm{P}_{4}=6.022 \times 10^{23} \mathrm{P}_{4} \text { molecules }
$$

There are four phosphorus atoms in one molecular unit of \mathbf{P}_{4}.

$$
60.0 \mathrm{~g} \times \frac{6.022 \times 10^{23} \text { molecules }}{123.88 \mathrm{~g}} \times \frac{4 \mathrm{P} \text { atoms }}{1 \mathrm{P}_{4} \text { molecute }}=1.17 \times 10^{24} \text { phosphorus atoms }
$$

Example 7: Determine the number of Na^{+}ion in 92.3 g of sodium phosphate $-\mathrm{Na}_{3} \mathrm{PO}_{4}$.

$$
\begin{aligned}
\mathrm{Na}_{3} \mathrm{PO}_{4}=(3 \times 22.99)+30.97+(4 \times 16.00) & =163.94 \mathrm{~g} / \mathrm{mol}^{2} \\
& \Rightarrow 163.94 \mathrm{~g} \text { of } \mathrm{Na}_{3} \mathrm{PO}_{4}
\end{aligned}=1 \mathrm{~mol} \mathrm{Na}_{3} \mathrm{PO}_{4}=6.022 \times 10^{23} \mathrm{Na}_{3} \mathrm{PO}_{4} \text { formula units }
$$

There are three Na^{+}ions in one formula unit of $\mathrm{Na}_{3} \mathrm{PO}_{4}$.

$$
92.3 \mathrm{~g} \times \frac{6.022 \times 10^{23} \text { tnits }}{163.94 \mathrm{~g}} \times \frac{3 \mathrm{Na}^{+} \text {ions }}{1 \mathrm{Na}_{3} \mathrm{PO}_{4} \text { units }}=1.02 \times 10^{24} \mathrm{Na}^{+} \text {ions }
$$

Converting between Mass and Moles: (need to find Molar Mass first!)

$$
\begin{array}{rr}
\text { Moles }(\mathrm{mol})=\frac{1}{\text { Mass }(\mathrm{g})} \\
n=\text { molar Mass }(\mathrm{g} / \mathrm{mol}) & n=\frac{m}{M} \\
n=m=\text { mass } & M=\text { Molar mass }
\end{array}
$$

Example 8: Calculate the number of moles for 20.0 g of ethanol.

$$
\begin{gathered}
\text { Ethanol }=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=2(12.01)+6(1.01)+16.00 \quad M=46.08 \mathrm{~g} / \mathrm{mol} \\
n=\frac{m}{M}=\frac{20.0 \mathrm{~g}}{46.08 \mathrm{~g} / \mathrm{mol}} \quad n=\mathbf{0 . 4 3 4} \mathbf{~ m o l}
\end{gathered}
$$

Example 9: Determine the mass of 0.852 mol of aluminum carbonate

$$
\begin{aligned}
& \text { Aluminum carbonate }=\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}=2(26.98)+3(12.01)+9(16.00) \quad M=233.99 \mathrm{~g} / \mathrm{mol} \\
& n=\frac{m}{M} \quad \boldsymbol{m}=\boldsymbol{n} \boldsymbol{M}=(0.852 \mathrm{~mol})(233.99 \mathrm{~g} / \mathrm{mol})
\end{aligned}
$$

Atomic Mass: - sometimes called atomic weight.

- the mass of the atom in atomic mass unit (amu).
$-1 \mathrm{amu}=$ exactly one-twelfth the mass of one carbon-12 atom $\approx 1.67 \times 10^{-27} \mathrm{~kg}$.
Average Atomic Mass: - Average Mass of an atom and its isotopes after accounting their proportions of abundance (as stated on the Periodic Table of Elements).

Relative Abundance: - the relative proportion of various isotopes of an element.
Relative Percentage Abundance: - the relative proportion of various isotopes of an element in percentage.

```
Average Atomic Mass = (Relative Abundance of Isotope A)(Mass Number of Isotope A)
    + (Relative Abundance of Isotope B)(Mass Number of Isotope B)
    + (Relative Abundance of Isotope C)(Mass Number of Isotope C) + ...
```

Example 10: Iron has three natural isotopes. If ${ }^{56} \mathrm{Fe}$ and ${ }^{57} \mathrm{Fe}$ have relative percentage of abundance at 91.754% and 2.401% respectively, and the rest is ${ }^{54} \mathrm{Fe}$, calculate the average atomic mass of iron? $\%$ abundance of ${ }^{54} \mathrm{Fe}=100 \%-91.754 \%-2.401 \%=\mathbf{5 . 8 4 5} \%$

Average amu of Iron = 55.91 amu

Assignment

7.1 pg. 229 \#1 to 5 (Practice); pg. 231 \#1 to 4 (Practice); pg. 232 \#1 to 3 (Practice); pg. 233 \# 1 to 13
7.2 pg. 239-240 \#1 to 4 (Practice); pg. 236 \#1 and 2 (Practice); pg. 240 \#1, 3 to 12, 14 to 16

7.3: Formulas and Percentage Composition

Percentage Composition: - also called mass percent or percentage mass.

- it is the mass percentage of each element in a compound.

For Compound $\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}} \mathrm{C}_{\mathrm{z}}$ with its Total Mass (m), the Mass Percentages are:

$$
\% \mathrm{~A}=\frac{m_{A}}{m} \times 100 \% \quad \% \mathrm{~B}=\frac{m_{B}}{m} \times 100 \% \quad \% \mathrm{C}=\frac{m_{C}}{m} \times 100 \%
$$

For Compound $\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}} \mathrm{C}_{\mathrm{z}}$ with its Molar Mass (M), the Mass Percentages are:

$$
\% \mathrm{~A}=\frac{(x)\left(M_{A}\right)}{M} \times 100 \% \quad \% \mathrm{~B}=\frac{(y)\left(M_{B}\right)}{M} \times 100 \% \quad \% \mathrm{C}=\frac{(\mathrm{z})\left(M_{C}\right)}{M} \times 100 \%
$$

Example 1: Calculate the mass percentage of sodium chromate.

$$
\mathrm{Na}_{2} \mathrm{CrO}_{4} \quad M=161.98 \mathrm{~g} / \mathrm{mol}
$$

Assume we have $161.98 \mathrm{~g}(1 \mathrm{~mole})$ of $\mathrm{Na}_{2} \mathrm{CrO}_{4}$, there are 2 moles of $\mathrm{Na}, 1$ mole of Cr and 4 moles of O :

$$
\begin{aligned}
& \% \mathrm{Na}=\frac{(2 \mathrm{mel})(22.99 \mathrm{~g} / \mathrm{mel})}{161.98 \mathrm{~g}} \times 100 \%=28.38622052 \% \\
& \% \mathrm{Cr}=\frac{(1 \mathrm{mel})(52.00 \mathrm{~g} / \mathrm{mel})}{161.98 \mathrm{~g}} \times 100 \%=32.10272873 \% \\
& \% \mathrm{O}=\frac{(4 \mathrm{mel})(16.00 \mathrm{~g} / \mathrm{mel})}{161.98 \mathrm{~g}} \times 100 \%=39.51105075 \%
\end{aligned}
$$

Empirical Formula: - the simplest ratio between the elements in a chemical formula.
Molecular Formula: - the actual chemical formula of a compound.

$$
\begin{aligned}
& {\text { Molecular Formula }=(\text { Empirical Formula })_{n}}^{\text {where } n=\text { natural number }}
\end{aligned}
$$

Example:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad \Longleftarrow \mathrm{CH}_{2} \mathrm{O}
$$

Molecular Formula for Glucose
Empirical Formula
Note: Knowing the mass percentages of a compound allow us to find the empirical formula. To know the molecular formula, we must also know the molar mass.

Example 2: A compound has an empirical formula of $\mathrm{CH}_{3} \mathrm{~N}$ has a molar mass of $116.12 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of the compound?

$$
\begin{aligned}
\text { Empirical Formula } & =\mathbf{C H}_{3} \mathbf{N} \quad(29.05 \mathrm{~g} / \mathrm{mol}) \quad \frac{\text { Actual Molar Mass }}{\text { Emprical Molar Mass }}=\frac{116.12 \mathrm{~g} \not \mathrm{mel}}{29.05 \mathrm{~g} \not \mathrm{~mol}} \approx 4 \\
& \text { Molecular Formula }=\text { Empirical Formula } \times 4=\left(\mathrm{CH}_{3} \mathrm{~N}\right) \times 4
\end{aligned}
$$

$$
\text { Molecular Formula }=\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{4}
$$

Example 3: Cobalt (II) nitrate is a hydrate with a chemical formula of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \bullet x \mathrm{H}_{2} \mathrm{O}$. When the 2.45 g of hydrate is heated, 1.54 g of residual is left behind. Determine the number of hydrate unit for cobalt (II) nitrate.

$$
\begin{array}{ll}
\text { Mass of } \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}=1.54 \mathrm{~g} & \text { Mass of } \mathrm{H}_{2} \mathrm{O} \text { released }=2.45 \mathrm{~g}-1.54 \mathrm{~g}=0.91 \mathrm{~g} \\
n=\frac{1.54 \mathrm{~g}}{182.95 \mathrm{~g} / \mathrm{mol}}=0.0084176004 \mathrm{~mol} \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} & n=\frac{0.91 \mathrm{~g}}{18.02 \mathrm{~g} / \mathrm{mol}}=0.0504994451 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

$$
\frac{n_{\mathrm{H}_{2} \mathrm{O}}}{n_{\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}}}=\frac{0.0504994451 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{0.0084176004 \mathrm{~mol} \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}} \approx \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}}
$$

Molecular Formula $=\mathbf{C o}\left(\mathrm{NO}_{3}\right)_{2} \bullet 6 \mathbf{H}_{2} \mathrm{O}$

Example 4: Vitamin C has a molar mass of $176.14 \mathrm{~g} / \mathrm{mol}$ and contains carbon, hydrogen, and oxygen atoms. If the $\%$ mass of carbon and oxygen are 40.91% and 54.50% respectively, determine the empirical and molecular formula of vitamin C .
$\% \mathrm{C}=40.91 \% \quad \% \mathrm{O}=54.50 \% \quad \% \mathrm{H}=100 \%-40.91 \%-54.50 \%=4.59 \%$
Assume 100 g of Vitamin C. Then, there are

$$
\begin{aligned}
& m_{\mathrm{C}}=100 \mathrm{~g} \times 40.91 \%=40.91 \mathrm{~g} \quad m_{\mathrm{O}}=100 \mathrm{~g} \times 54.50 \%=54.50 \mathrm{~g} \quad m_{\mathrm{H}}=100 \mathrm{~g} \times 4.59 \%=4.59 \mathrm{~g} \\
& n_{\mathrm{C}}=\frac{40.91 \mathrm{~g}}{12.01 \mathrm{~g} / \mathrm{mol}}=3.40632806 \mathrm{~mol}_{\mathrm{C}} \quad n_{\mathrm{H}}=\frac{4.59 \mathrm{~g}}{1.008 \mathrm{~g} / \mathrm{mol}}=4.553571429 \mathrm{~mol}_{\mathrm{H}} \\
& n_{\mathrm{O}}=\frac{54.50 \mathrm{~g}}{16.00 \mathrm{~g} / \mathrm{mol}}=3.40625 \mathrm{~mol}_{\mathrm{O}} \\
& \frac{n_{\mathrm{C}}}{n_{\mathrm{O}}}=\frac{3.40632806 \mathrm{molC}}{3.40625 \mathrm{~mol} \mathrm{O}} \approx \frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{molO}} \quad \begin{aligned}
& n_{\mathrm{H}} \\
& n_{\mathrm{C}}: n_{\mathrm{O}}=1: 1 \longleftarrow \frac{n_{\mathrm{H}}}{n_{\mathrm{O}}} \xrightarrow[3.553571429 \mathrm{~mol} \mathrm{H}]{3.40625 \mathrm{~mol} \mathrm{O}} \approx 1.33=\frac{4 \mathrm{~mol} \mathrm{H}}{3 \mathrm{molO}} \\
& \text { Combine Ratios } \xrightarrow[\mathrm{H}]{ }: n_{\mathrm{O}}=4: 3
\end{aligned}
\end{aligned}
$$

$$
\text { Empirical Formula }=\mathbf{C}_{3} \mathbf{H}_{4} \mathrm{O}_{3} \quad(88.06 \mathrm{~g} / \mathrm{mol}) \quad \frac{\text { Actual Molar Mass }}{\text { Emprical Molar Mass }}=\frac{176.14 \mathrm{~g} \not \mathrm{~mol}}{88.06 \mathrm{~g} \not \mathrm{~mol}}=2
$$

Molecular Formula = Empirical Formula $\times 2$

OR
Molecular Formula $=\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$
Another Method may be used where the Actual Molar Mass becomes the Mass of Vitamin used. Then, the Mole of each Atom is calculated to determine the Molecular Formula first.

$$
n_{\mathrm{C}}=\frac{40.91 \% \times 176.14 \mathrm{~g}}{12.01 \mathrm{~g} / \mathrm{mol}} \approx 6.00 \mathrm{~mol}_{\mathrm{C}} \quad n_{\mathrm{H}}=\frac{4.59 \% \times 176.14 \mathrm{~g}}{1.01 \mathrm{~g} / \mathrm{mol}} \approx 8.00 \mathrm{~mol}_{\mathrm{H}}
$$

$n_{\mathrm{O}}=\frac{54.50 \% \times 176.14 \mathrm{~g}}{16.00 \mathrm{~g} / \mathrm{mol}} \approx 6.00 \mathrm{~mol}_{\mathrm{O}}$
Molecular Formula $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right)$ will be found first, then the Empirical Formula $\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}\right)$ will be stated.

Assignment

7.3 pg. 243 \#1 to 4 (Practice); pg. 25 \#1 to 3 (Practice); pg. 248 \#1 to 5 (Practice); pg. 248 \#1 to 10
Chapter 7 Review pg. 251-254 \#19 to 66

