Honour ChemistryUnit 6 Outline: Thermochemistry and Nuclear Chemistry

Chapters 11: Thermochemistry – Heat and Chemical Change

Classes	Topics	Suggested Reading	✓	Assignments	✓
1	Thermochemistry, Energy, Chemical Potential Energy, System,	11.1: The Flow of Energy		pg. 299 #1 to 10	
	Surroundings, Universe, Law of Conservation of Energy, Endothermic	(pg. 293 to 299)			
	and Exothermic Process, Heat and Physical Change, Kinetic				
	(Temperature) Change, Joules and Calories, Specific Heat Capacity, $q =$				
	$mC\Delta T$, Enthalpy (H), Heating Curve, Potential (Phase) Change, Molar	11.3: Heat in Changes of State		pg. 311 #22 and 23; pg. 313 #24 to 29	
	Heat of Fusion (ΔH_{fus}), Molar Heat of Vaporization (ΔH_{vap}), $\Delta H =$	(pg. 307 to 313)			
	$n\Delta H_{\text{fus}}, \Delta H = n\Delta H_{\text{vap}}, \Delta H$ notation, Molar Heat of Solution (ΔH_{sol}), $\Delta H =$				
	$n\Delta H_{\rm sol}$, Thermochemical Equations				
2	Calorimetry, Calorimeter, Heat of Reaction, $\Delta H = n\Delta H_{rxn}$, Potential	11.2: Measuring and		pg. 302 #11 and 12; pg. 304 #13 and 14;	
	Diagrams, Calorimetry Designs and Calculations (Heat Gain = Heat	Expressing Heat Changes		pg. 306 #15 to 19	
	Lost), Molar Heat of Combustion (ΔH_{comb}), Molar Heat of Formation	(pg. 300 to 306)			
	$(\Delta H_{\rm f}), \Delta H = n\Delta H_{\rm f}, \Delta H = \Sigma H_{\rm products} - \Sigma H_{\rm reactants},$ Hess's Law of Heat	11.4: Calculating Heat		pg. 317 #30 and 31; pg. 318 #32 to 35	
	Summation (Adding Thermochemical Equation)	Changes (pg. 314 to 318)			
3	Greenhouse Effect, Other Forms of Energy Production	11.5: Energy Productions and		Chapter 11 Review	
		Environments (Notes)		pg. 322–324 #36 to 48, 50 to 63, 69 to 75	
4	Lab #6: Physical Calorimetry – Heat of Fusion and Heat of Solvation			Lab #6 Report Due: (along with Lab #7)	
	March 5, Wednesday			March 20, Thursday	
5	Chapters 11 Quiz				
	March 6, Thursday				

Chapter 28: Nuclear Chemistry

Classes	Topics	Suggested Reading	✓	Assignments	✓
1	Radioisotopes, Radioactivity, Radiation, Radioactive	28.1: Nuclear Radiation (pg. 841 to 844)		pg. 844 #1 to 3	
	Decay, Alpha (α), Beta (β) and Gamma (γ) Radiations, Half-Life ($t_{1/2}$) and Radioactive Decay Calculations, Transmutation Reactions, Transuranium Elements, Balancing Nuclear Reactions	28.2: Nuclear Transformation (pg. 847 to 851)		pg. 851 #6, 8 and 10 and Worksheet: Isotopic Dating and Half-Life	
2	Nuclear Fission, Nuclear Fission Reactor, Control Rods, Chain Reaction (Subcritical, Critical and Supercritical Reactions), Nuclear Fusion, Energy involved in Nuclear Reactions, Environmental Impact of Nuclear Energy Production	28.3: Fission and Fusion of Atomic Nuclei (pg. 853 to 856)		pg. 856 #11 to 15 Chapter 28 Review pg. 864–865 #22 to 29, 34 to 36, 39, 41, 45 to 47 Unit 6 Review: pg. 325 #1 to 16; pg. 867 #1 to 6, 10 to 13	
3	Lab #7: Chemical Calorimetry			Lab #7 Report Due:	
4	Unit 6 Test (March 20, Thursday)			Unit 6 Practice Test	+