Unit 1: BASIC CHEMISTRY

Chapter 1: Introduction

1.2: The Scientific Method

Scientific Method: - a logical method to find solutions of scientific problems.

Steps of Scientific Method

1. Observation: - an act of recognizing and noting a fact or occurrence.
2. Scientific Hypothesis: - an educated guess or a testable assumption to explain any observable phenomenon.
3. Experimentation or Control Test: - a test performed by scientist and researcher to increase the accuracy and reliability of an experimental test.

- involves testing of two variables (manipulated and responding variables) while all other variables are controlled.
a. Accuracy: - sometimes refer to as validity. It describes whether the result is correct.
b. Reproducibility: - sometimes refer to as reliability. It describes the consistency and the repeatability of the result.
c. Observations: - often involve making measurements with scientific instrument(s).

4. Theory: - an idea that can explain a set of observations that has stood up to repeated scrutiny.
5. Scientific Law: - a concise statement that summaries the results of many observations and experiments. - describes the phenomenon without trying to explain it.

Limitations of Science: - science cannot answer all questions. It can only tackle "testable" hypothesis. Philosophical and Religious Questions CANNOT be answered by science.

1.3: Classification of Matter

All substance in the universe is made up of matter. However, matter can be classified into mixtures and pure substances.

There are two kinds of mixtures. Heterogeneous (hetero means different) mixtures are mixtures which we can see its different components with the naked eye (also called mechanical mixtures). An example of a heterogeneous mixture is a bag of assorted nuts. We can clearly see the different kind of nuts (walnuts, peanuts, chestnuts, hazelnuts ... etc.) in the bag. A homogeneous (homo means the same) mixture is also called a solution. Unlike heterogeneous mixture, a solution is a mixture that consists of different components, which cannot be seen from a naked eye. An example of a solution is a salt solution. After we completely dissolved the salt in water, we cannot see the salt particles in the water.

Unlike mixtures, pure substance is a substance with a constant composition that cannot be separated by physical means (like phase changes and temperature changes). Pure Substances can be
classified into elements and compounds. Element is a pure substance that has one kind of atom. The Periodic Table of Elements lists all the different elements that are either found in nature or prepared in the laboratory synthetically. An atom is defined as the smallest particle of matter. An example of an element is hydrogen. It contains only hydrogen atoms. A compound is defined as a pure substance that is composed of two or more different elements. The smallest unit of a compound is called a molecule (a particle that is made up of two or more different atoms or a unit of two or more identical atoms). An example of a compound is water. The smallest unit of water is the $\mathrm{H}_{2} \mathrm{O}$ molecule. Each water molecule $\left(\mathrm{H}_{2} \mathrm{O}\right)$ contains two hydrogen atoms and an oxygen atom. An element can have molecular units. An example of that is hydrogen. In its natural state, hydrogen gas exists as H_{2} molecules, which consist of units of two hydrogen atoms. Other elements exist as singular atomic units. Iron atoms, for example, do not organize themselves in multiple atomic units. They exist as individual atoms.

Matter: - anything that has a mass and occupies space.
Mixtures: - are matters that are made up of more than one kind of substances and the components can be separated by Physical Change - No New Substance is formed (change of state, stirring, filtering... etc).

Heterogeneous (Mechanical) Mixture: - mixture that is composed of two of more substances where the components can be seen by the naked eye.

Filtration: - using a filter and a funnel, a mechanical mixture consists of liquids and solids can be separated.

Homogeneous Mixture (Solution): - mixture that is composed of two or more substances where the components the same throughout (cannot separate the components by the naked eye).

Solute: - the substance that is being dissolved. Solvent: - the substance doing the dissolving
Example: Salt Water $($ Solute $=$ Salt; Solvent $=$ Water $) \quad 9 \%$ Alcohol $($ Solute $=$ Alcohol; Solvent $=$ Water $)$
Evaporation: - an aqueous solution that consists of a solid solute can be recovered by evaporation of the solvent. The solvent may be recovered as well if a condensation device is used.

Distillation: - an aqueous solution that consists of a liquid solute can be separated by evaporation of the substance with a lower boiling point followed by condensation.

Pure Substance: - a substance with a constant composition.

- in a case where the pure substance is composed of more than one kind of matter, they can only be separated by chemical change (burning, oxidation, electrolysis ... etc).

Element: - a pure substance that is made up of one kind of atom.
Compound: - a pure substance that is made up of more than one kind of element.
Atom: - the smallest particle of matter.
Molecule: - the smallest unit of a compound or a diatomic or a polyatomic element.

- basically, it is a particle unit that is made up of more than one atom.

Examples:

1. Classify the following as Heterogeneous or Homogeneous Mixture:
a) a bag of gravel
b) cement
c) saturated salt water
d) a methanol and water mixture
e) oil and water
f) the atmosphere
g) Jell-O
h) diet carbonated soft drink
2. Classify the following as Mixture or Pure Substance:
a) lake water
b) tap water
c) distilled water
d) iron
e) steel (iron and carbon)
f) chromium
g) beer
h) sugar
i) gasoline
3. Classify the following as Element or Compound: (use the Periodic Table of Elements)
a) hydrogen
b) water
c) ammonia
d) oxygen
e) carbon dioxide
f) chlorine
g) ethanol
h) charcoal (carbon)
i) salt
j) nickel
k) gold
l) neon
m) propane
n) baking soda
o) uranium
p) mercury

Answers:

1. Heterogeneous Mixtures: a), e)

Homogeneous Mixtures: b), c), d), f), g), h)
All the components of the heterogeneous mixtures can be seen by the naked eye. However, the components of the homogeneous mixtures cannot be distinguished by the naked eye.
2. Mixtures: a) lake water: contains water, soil particles, micro-organisms ...etc.
b) tap water: contains fluoride and chloride additives.
e) steel: a mixture of iron and carbon. g) beer: contains alcohol, water and other ingredients.
i) gasoline: contains mostly octane and other hydrocarbons.

Pure Substances: c) distilled water: contains water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ only.
d) iron: an element with a symbol Fe .
f) chromium: an element with a symbol Cr .
h) sugar: a compound commonly known as sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$.
3. Elements: a) hydrogen (H)
d) oxygen (O)
f) chlorine (Cl)
h) carbon (C)
j) nickel (Ni)
k) gold (Au)

1) neon (Ne)
o) uranium (U)
p) mercury (Hg)

Compounds: b) water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
c) ammonia $\left(\mathrm{NH}_{3}\right) \quad$ e) carbon dioxide $\left(\mathrm{CO}_{2}\right)$
g) ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$
i) salt (NaCl)
m) propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$
n) baking soda $\left(\mathrm{NaHCO}_{3}\right)$

If the name of the substance appears on the Periodic Table of Elements, then it is an element.

1.4: Physical and Chemical Properties of Matter

Physical Property: - an observation or measurement that does not change the composition or identity of substance.

Solids: - the state of matter where it has a definite volume with a constant shape.
Liquid: - the state of matter where it has a definite volume but an indefinite shape.
Gas: - the state of matter where it has an indefinite volume and shape (compressible).
Kinetic Molecular Theory and States of Matter

Solids have particles are in fixed positions.

Liquids have particles that can "rolled" past one another.

Gases have particles that have truly random motion and have very weak interactions between molecules.

Phase Change

Sublimation: - the phase change from solid to gas directly (vice versa is called deposition).
Example: Dry ice (Solid Carbon Dioxide) sublimates from solid to gas directly, skipping the liquid phase.

Chemical Property: - an observation or measurement that involves a change in the fundamental composition of substance.

Measurable Property: - a quantitative observation or measurement.
a) Extensive Property: - a measurement that depends on how much matter is being considered.
(Examples: mass and volume)
b) Intensive Property: - does not depend on how much matter is being considered.
(Example: density - both mass and volume change proportionally)

$$
1.3 \& 1.4 \underset{\text { Assignment }}{\text { pg. } 23 \text { \#2 to } 12 \text { (even) }}
$$

1.5 \& 1.6: Measurement \& Handling Numbers

Macroscopic Properties: - can be measured directly with instruments like scales and graduated cylinders, and thermometers.

Microscopic Properties: - must be determined by indirect methods like mass spectrometers; linear accelerators.

Uncertainty: - all measuring instruments have some levels of uncertainty due to how they were manufactured or users' reading errors.

Precision: - the smallest interval of a measuring instrument.

- uncertainty is sometimes calculated by half the precision of an electronic instrument.

Example: An electronic balance with a precision of 0.01 g has an uncertainty of $\pm 0.005 \mathrm{~g}$

Uncertainty (electronic instrument)

Scientific Notation: - commonly used to state very big or very small numbers.

$$
(1 \text { to } 9.999 \ldots) \times 10^{n}
$$

n is an integer
If $\boldsymbol{n}<\mathbf{0}$, then the actual number was smaller than $\mathbf{1}$
If $n>0$, then the actual number was greater than 10

Example 1: Convert the following standard notations to scientific notations or vice versa.
a. Speed of Light $=3 \times 10^{5} \mathrm{~km} / \mathrm{s}=\mathbf{3 0 0 , 0 0 0} \mathrm{km} / \mathrm{s} \quad$ (moved 5 decimal places to the right)
b. Mass of an Electron $=9.11 \times 10^{-31} \mathrm{~kg}=0.000000000000000000000000000000911 \mathrm{~kg}$
(moved 31 decimal places to the left)
c. Diameter of a Red Blood Cell $=0.0000075 \mathrm{~m}=7.5 \times \mathbf{1 0}^{\mathbf{- 6}} \mathbf{m}$ (moved 6 decimal places to the right)
d. 2003 US Debt $=\$ 6,804,000,000,000=\$ 6.804 \times 10^{12} \quad($ moved 12 decimal places to the left)

Exact Number: - number that indicates no uncertainty. (Numbers in formulas; numbers written in words, counting numbers, or container size)
Examples: Two chairs, $S A=\underline{4} \pi r^{2}, \underline{\mathbf{2 5 0 0}}$ atoms, $\underline{\mathbf{1 0 0}} \mathrm{mL}$ Beaker
Significant Digits (Figures): - digits used in the measurement plus one uncertain value (for non-electronic measuring devices like graduated cylinder, ruler ... etc.).

To Count Significant Digits

1. Start counting the first non-zero digit. Do NOT count the leading zero(s).
2. Count all captive zeros (between non-zero digits) and trailing zero at the end of the measurement.
3. Include ALL digits of a whole number if it contains a decimal point. All digits in a whole number that does not end in zero(s) are significant even if it does not contain a decimal point.
(Examples: 420. $\rightarrow 3$ sig digs; 402 or $402 . \rightarrow 3$ digits)
4. If a measurement contains no decimal places, the trailing zeros may or may not be significant. Hence, using scientific notation eliminates this ambiguity.
Example 2: State the number of significant digits for the following measurements.
a. 0.03 g
1 significant digit
e. 25000 g
b. 0.030 g
2 significant digits
f. $\quad 9.300 \times 10^{4} \mathrm{~m}$
c. 0.0304 g
3 significant digits
g. $4.05 \times 10^{-2} \mathrm{~L}$
d. 0.03040 g
4 significant digits
h. $7000 .{ }^{\circ} \mathrm{C}$
$2,3,4$ or 5 significant digits
4 significant digits
3 significant digits
4 significant digits

Calculating with Significant Digit

1. Adding and Subtracting: - Line up the significant digits. The answer should be to the least precise measurement used in the calculation.

Example 3: $5.345 \mathrm{~g}+0.42 \mathrm{~g}+11.8 \mathrm{~g}$

Least precise decimal place is at the tenth. Final Answer should be to one decimal place. 17.6 g
2. Multiplying and Dividing: - answer should be in the least number of significant digits used in calculation.

Example 4: $\frac{13.25 \mathrm{~g}}{1.02 \mathrm{~mL}}$

$$
\frac{13.25 \mathrm{~g}}{1.02 \mathrm{~mL}}=12.99019608 \mathrm{~g} / \mathrm{mL}
$$

The least number of significant digits used is three.

Page 6.
3. Multiple Step Calculations: - follow the multiply and divide rule.

- Do NOT round off until the very LAST step.

(Note: most chemistry textbooks round off at every step. In essence, the answers vary little. Hence, either way is considered correct.)

Example 5: Calculate the final output energy in Joules if the equivalent mass of $5.3 \times 10^{-3} \mathrm{~kg}$ is turned into energy along with an initial energy input of $4.15 \times 10^{14} \mathrm{~J}$. (Use $E=m c^{2}$ where $c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$)

$$
\begin{aligned}
& \boldsymbol{E}_{\text {output }}=\boldsymbol{m} \boldsymbol{c}^{2}+\boldsymbol{E}_{\text {input }} \\
& E_{\text {output }}=\left(5.3 \times 10^{-3} \mathrm{~kg}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}+4.15 \times 10^{14} \mathrm{~J} \\
& E_{\text {output }}=8.92 \times 10^{14} \mathrm{~J} \\
& \boldsymbol{E}_{\text {output }}=\mathbf{8 . 9} \times \mathbf{1 0}^{\mathbf{1 4}} \mathbf{~ J}
\end{aligned}
$$

Theoretical Result: - the supposed result of an experiment as calculated prior to the lab.
Experimental Result: - the actual measured result of an experiment.
Example 6: Determine the \% Error and \% Yield of an experiment if the theoretical result was 4.579 g and the experimental result was 4.272 g .

$$
\% \text { Error }=\frac{\mid \text { Theoretical }- \text { Experimental } \mid}{\text { Theoretical }(100 \% \text { is an exact number })} \times 100 \% \quad \% \text { Yield }=\frac{\text { Experimental }}{\text { Theoretical }} \times 100 \%
$$

$$
\begin{array}{cc}
\text { \% Error }=\frac{|4.579 \mathrm{~g}-4.272 \mathrm{~g}|}{4.579 \mathrm{~g}} \times 100 \% & \% \text { Yield }=\frac{4.272 \mathrm{~g}}{4.579 \mathrm{~g}} \times 100 \% \\
\% \text { Error }=6.705 \% & \% \text { Yield }=93.30 \%
\end{array}
$$

SI Units: - International Metric Units (le Système International).

Metric Prefixes and Exponential Notations

> When converting units, the same number of significant digits must be preserved.

$$
\begin{aligned}
& \text { Note: } \mathbf{1 m}^{3} \neq \mathbf{1} \mathrm{L} \quad 1 \mathrm{~m}^{3}=1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m} \\
& 1 \mathrm{~m}^{3}=100 \mathrm{~cm} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm} \\
& 1 \mathrm{~m}^{3}=1,000,000 \mathrm{~cm}^{3} \\
& 1 \mathrm{~m}^{3}=1000 \mathrm{~L}
\end{aligned}
$$

Example 7: Complete the following unit conversions
a. $345 \mathrm{~mL}=0.345 \mathrm{~L}$
(left 3 places)
d. $26 \mathrm{~cm}^{3}=0.026 \mathrm{~L}$
$\left(26 \mathrm{~cm}^{3}=26 \mathrm{~mL}\right)$ (left 3 places)
b. $42 \mathrm{~g}=0.042 \mathrm{~kg}$
(left 3 places)
e. $1854 \mathrm{~cm}=\mathbf{0 . 0 1 8 5 4} \mathrm{km}$ (left 5 places)
c. $54300 . \mathrm{m}=54.300 \mathrm{~km}$ (left $\mathbf{3}$ places)
f. $0.035 \mathrm{~kg}=\underbrace{35000} \mathrm{mg}=3.5 \times 10^{4} \mathrm{mg} \quad$ (right 6 places) too many significant; original measurement only has two digits. two significant digits

Temperature: - the average kinetic energy of a substance.

Convert from degree Celsius to Fahrenheit 32 is an exact number

Convert from

Some important temperatures:

$0^{\circ} \cdot \mathrm{C}=$ Water Freezes $100^{\circ} \mathrm{C}=$ Water Boils
37. $\mathrm{C}=$ Normal Body Temperature
20. $\mathrm{C}=$ Ambient Room Temperature

Kelvin: - temperature scale where $\mathbf{0} \mathbf{K}$ (absolute zero) = -273.15. C (freezing point of hydrogen - no heat, particles stop moving)

$$
T_{K}=T_{C}+273.15
$$

Example 8: With wind chill, Calgary can get down to $-37.0^{\circ} \mathrm{C}$. Convert the temperature to Fahrenheit and Kelvin.

$$
\begin{array}{ll}
T_{F}=\frac{9}{5} T_{C}+32 & T_{K}=T_{C}+273.15 \\
T_{F}=\frac{9}{5}(-37.0)+32 & T_{K}=-37.0+273.15 \\
T_{F}=-34.6 \mathrm{~F} & T_{K}=236.15 \mathrm{~K} \\
T_{F}=-\mathbf{3 4 . 6 \mathrm { F }} & T_{K}=\mathbf{2 3 6} \mathbf{K}
\end{array}
$$

Mass: - the amount of stuff in an object.
Weight: - the amount of gravitational force that is pulling on an object.
Example: An object that has 50 kg on Earth will have a mass of 50 kg on the moon. However, the same object, which has a weight of 490.5 N on Earth, will only weight 81.75 N on the moon. This is because the gravitation pull on the moon is $1 / 6$ of that on Earth.
Density: - the amount of mass per unit of volume

$$
\text { Density }=\frac{\text { Mass }(\mathrm{g} \text { or } \mathrm{kg})}{\text { Volume }\left(\mathrm{cm}^{3}, \mathrm{~mL}, \mathrm{~L}, \mathrm{~m}^{3}\right)} \quad D=\frac{m}{V}
$$

Example 9: Lead has a density of $11.34 \mathrm{~g} / \mathrm{cm}^{3}$. If a lead sphere has a radius of 5.00 cm , what is its mass?

$$
D=11.34 \mathrm{~g} / \mathrm{cm}^{3} \quad r=5.00 \mathrm{~cm} \quad m=?
$$

Manipulate the formula to solve for m :

$$
\begin{aligned}
D & =\frac{m}{V} \\
D V & =m
\end{aligned}
$$

We need to use the Volume formula of a Sphere.

$$
\begin{aligned}
& \boldsymbol{V}_{\text {sphere }}=\frac{\mathbf{4}}{\mathbf{3}} \boldsymbol{\pi \boldsymbol { r } ^ { \mathbf { 3 } }} \\
& V_{\text {sphere }}=\frac{\mathbf{4}}{3} \pi(5.00 \mathrm{~cm})^{3} \\
& V_{\text {sphere }}=523.5987 \ldots \mathrm{~cm}^{3}
\end{aligned}
$$

$$
4 \times 3 \pi 5 \times 3.5987756
$$

(Do NOT round off. We are not done yet.)

Substitute D and V to solve for m

$$
\begin{aligned}
m & =D V \\
m & =\left(11.34 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(523.5987 \ldots \mathrm{~cm}^{3}\right) \\
m & =5.94 \times 10^{3} \mathrm{~g} \text { or } 5.94 \mathrm{~kg}
\end{aligned}
$$

To recall all digits of the previous answer

Assignment

$1.5 \& 1.6$ pg. 23-24 \#14, 16, 18 to 20, 22, 24 to 26, 28 to 30

1.7: Dimensional Analysis in Solving Problems

Dimensional Analysis: - commonly known as the unit factor method.

- using units themselves to analyse their conversions or whether the right kind of procedure is used for calculations.
- unit factors have a bigger unit along with an equivalent smaller unit.
- final answer should keep the original number of significant digits.

Example 1: Convert 65.0 miles $/ \mathrm{h}$ to $\mathrm{km} / \mathrm{h} . \quad(1 \mathrm{mile}=1.609344 \mathrm{~km})$

$$
\frac{65.0 \text { miles }}{1 \text { hour }} \times \frac{1.609344 \mathrm{~km}}{1 \text { mite }}=104.60736 \mathrm{~km} / \mathrm{h} \quad \text { (round to } 3 \text { significant digits) }
$$

105. km/h or $105 \mathrm{~km} / \mathrm{h}$

Example 2: Convert $50 . \mathrm{km} / \mathrm{h}$ to m / s.

$$
\frac{50 . \mathrm{km}}{1 \text { heur }} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 \text { hour }}{3600 \mathrm{~s}}=13.8888889 \mathrm{~m} / \mathrm{s} \quad \text { (round to } 2 \text { significant digits) }
$$

14. m/s or $14 \mathrm{~m} / \mathrm{s}$

Example 3: Convert 55 . miles/gal to $\mathrm{km} / \mathrm{L} .(1 \mathrm{gal}=3.785412 \mathrm{~L})$

Chapter 2: Atoms, Molecules and Ions

2.1: The Atomic Theory

The practice of using symbols to represent elements can be traced back to the ancient Greek alchemists. Their purpose was to find a chemical recipe to make gold from other less valuable metals. (We now know that it is only possible now if we can change the number of protons in the nucleus).

In 1808, a British scientist by the name of John Dalton published his theory of atoms that would have profound effects on the philosophy on chemistry and physics. (The word atom comes from the Greek word atomos, which means indivisible. A Greek philosopher Democritus in 5th-century BC first suggested this concept). The Dalton's Atomic Theory can be summarized as:

1. All elements are made up of tiny particles called atoms.
2. The atoms of a particular element are identical and have the same physical and chemical properties. Different elements have different kind of atoms.
3. Chemical compounds are formed when different kinds of atoms combine together. A particular compound always has the same relative numbers and types of atoms.
4. Chemical reactions deal with the rearrangement of the atom, which changes the way they are combined together. There is no change to the atoms themselves (they cannot be created or destroyed) in a chemical reaction.

Early Fundamental Chemical Laws

1. Law of Conservation of Mass: - mass is neither created nor destroyed in a chemical reaction. (Lavoisier)

Example 1: A 7.00 g of iron nail is allowed to rust. The rusted nail has a mass of 10.2 g . What is the amount of oxygen reacted with the iron nail?

```
        Iron + Oxygen \(\rightarrow\) Rust
        \(7.00 \mathrm{~g} \quad ? \mathrm{~g} \quad 10.2 \mathrm{~g}\)
Mass of Oxygen \(=10.2 \mathrm{~g}-7.00 \mathrm{~g}\)
    Mass of Oxygen \(=3.2 \mathrm{~g}\)
```

2. Law of Definite Proportion: - the same compound always contains exactly the same proportion of elements by mass.
(Proust)
Example 2: Water contains about 8 parts oxygen to 1 part hydrogen by mass. A 192 g of unknown liquid compose of hydrogen and oxygen contains 12 g of hydrogen. Is the unknown liquid water? Justify your response.

$$
\begin{aligned}
& 192 \mathrm{~g} \text { total }-12 \mathrm{~g} \text { of hydrogen }=180 \mathrm{~g} \text { of oxygen } \\
& \frac{180 \mathrm{~g} \text { oxygen }}{12 \mathrm{~g} \text { hydrogen }}=\frac{15 \text { parts oxygen }}{1 \text { part hydrogen }}
\end{aligned}
$$

Since the ratio between oxygen and hydrogen is $8: 1$ in water, the unknown liquid is NOT water.
3. Law of Multiple Proportion: - when two elements form a series of compounds, the ratios of the masses of the second element that combine with the first element can always be reduced to small whole numbers.
(Dalton)
Example 3: State the ratios of carbon between the following hydrocarbon compounds.

Hydrocarbons	Mass of Carbon per $\mathbf{1 g}$ of Hydrogen
Compound A	2.973 g
Compound B	3.963 g
Compound C	4.459 g

$$
\begin{array}{l|r}
\frac{A}{B}=\frac{2.973 \mathrm{~g}}{3.963 \mathrm{~g}}=0.7501892506 \approx 0.75 & \frac{\boldsymbol{A}}{\boldsymbol{B}}=\frac{\mathbf{3}}{\mathbf{4}} \\
\frac{B}{C}=\frac{3.963 \mathrm{~g}}{4.459 \mathrm{~g}}=0.8887642969 \approx 0.888 \ldots & \frac{B}{C}=\frac{\mathbf{8}}{\mathbf{9}} \\
\frac{C}{A}=\frac{4.459 \mathrm{~g}}{2.973 \mathrm{~g}}=1.49983182 \approx 1.5 & \frac{C}{A}=\frac{\mathbf{3}}{\mathbf{2}}
\end{array}
$$

2.2: The Structure of the Atom

Since the time of Dalton's Atomic Theory, scientists had improved upon his model to better explain the structure of an atom. The following is a summary of the different atomic models.
Dalton's Atomic Model:
In 1808, John Dalton proposed that all matter is made up of tiny particles called
atoms. Atoms cannot be divided, created or destroyed. Different elements have
different kinds of atoms. The difference is mainly due to the different atomic
masses.
Nuclear Model:
In 1895, Wilhelm Röntgen found that cathode rays caused glass and metals to
emit unusual rays (he called them X-rays). Later, Antoine Becquerel discovered
that a piece of radioactive metal (uranium) can expose a photographic plate. A
student of Becquerel, Marie Curie termed this energy as radiation. Three types of
rays were found as they deflected differently through a magnetic field. Alpha (α
rays - positively charged particles, Beta (β) rays - negatively charged particles,
and Gamma (γ) rays - neutrally charged particles with no deflection in a magnetic
field.
In 1912, Ernest Rutherford proposed the Nuclear Model for atoms after his
famous gold foil experiment (he shot alpha particles into a piece of gold foil and
found that the alpha particles passed through the gold foil - indicating the the atom
is made up of mostly empty space). Earlier to this time, E. Goldstein discovered
the positively charged (+1) subatomic particles called protons. Rutherford
proposed that the protons are packed tightly together at the centre of the atom
called the nucleus. In 1932, James Chadwick discovered neutrons (no charged).
Together, they suggested that the nucleus was made up of both protons and
neutrons (the bulk of the atomic mass) since electrons are very light compared to
the masses of the protons and neutrons.
On the other hand, negatively charged electrons move around the nucleus
because of their attraction with the positively charged nucleus (contains protons).
Since the nucleus is very small, the circling electrons make up almost all of the
volume of the atom. If the atom has a size of a football field, the nucleus is about
the size of a small nail at the centre of the field.

Subatomic Particles	Charge	Relative Mass	Actual Mass	Location
Electrons (e^{-})	-1	1	$9.11 \times 10^{-31} \mathrm{~kg}$	Region around the center of the atom
Protons (p $\left.\mathbf{p}^{+}\right)$	+1	1836.12	$1.67 \times 10^{-27} \mathrm{~kg}$	Centre of the atom called Nucleus
Neutrons (n)	0	1836.65	$1.67 \times 10^{-27} \mathrm{~kg}$	Inside the Nucleus with the protons

2.3: Atomic Number, Mass Number and Isotopes

Atomic Number and Atomic Mass:

Assignment

2.2 pg. 53 \#4, 8

We have looked at different atomic models. In high school chemistry, we deal mainly with the Bohr model. Recall from the Dalton's Atomic Theory, one of its points is that different elements have different atoms. The main difference between them is the mass number. This is the mass characteristic of a given element. The mass number of an element is relative to the mass of the carbon atom (6 protons and 6 neutrons with an atomic mass of 12). It is usually located at the right, top corner or directly below each element on the Table of Elements. Mass Number has a unit of amu (Atomic Mass Unit).

Because different elements have different mass number, the number of subatomic particles within an atom is also different for these elements. The atomic number, a number assigned to each element based on its mass number, is located at the top left corner of each element on the Table of Elements. The atomic number is equated to the number of protons and electrons of that atom. The number of neutrons can be found by subtracting the mass number (rounded off whole number) with the atomic number. (Note: The Table of Elements usually shows average atomic mass - more on this in the next chapter).

> Atomic Number = Number of Protons and Electrons of an Atom
> Number of Neutrons = Mass Number - Atomic Number

Example 1: State the Atomic Number, Average Atomic Mass, Number of protons, neutrons, and electrons of the following elements.

17 $\mathrm{Cl}_{\text {hlorine }}^{35.45}$	$\begin{gathered} \text { Atomic Number }=\mathbf{1 7} \\ \left(\mathbf{1 7} \mathbf{p}^{+} \text {and } \mathbf{1 7} \mathrm{e}^{-}\right) \\ \text {Average Atomic Mass }=\mathbf{3 5 . 4 5} \\ \text { \# of Neutron }=35.45-17=\mathbf{1 8} \mathbf{n} \end{gathered}$	$\mathbf{H}^{1.01}$	$\begin{gathered} \text { Atomic Number }=\mathbf{1} \\ \quad\left(\mathbf{1} \mathbf{p}^{+} \text {and } \mathbf{1} \mathbf{e}^{-}\right) \\ \text {Average Atomic Mass }=\mathbf{1 . 0 1} \\ \text { \# of Neutron }=1.01-1=\mathbf{0} \mathbf{n} \end{gathered}$

Note: Because any given atom has the same number of protons and electrons (same atomic number), all Atoms have a Net Charge of 0 .

Isotopes:

Isotopes are atoms of an element with the same atomic number but a different mass because of a different number of neutrons. For a given mass of substance, there exist a certain percentage of isotopes. Some isotopes are stable. Others are unstable and they go through a decomposition process called radioactive decay.

A common example is the isotope ${ }_{6}^{14} \mathrm{C}$ (Carbon-14: Carbon with an atomic mass of 14 amu , which has $8 \mathrm{n}, 6 \mathrm{p}+$ and $6 \mathrm{e}^{-}$). Naturally occur carbon contains 98.9% of Carbon-12, 0.55% of Carbon-13 and 0.55% of Carbon-14. Chemists, physicists, archaeologists, geologists, and criminologists commonly use the carbon isotope. Because Carbon-14 is unstable and goes through radioactive decay at a definite rate, we can measure the amount of isotopes left in a substance to deduce its age. Carbon-14 dating is a technique to date archaeological and geological findings by measuring the amount of Carbon-14 left in the artefacts. Carbon-13 is used by chemists to assist in identifications of various chemical compounds.

Isotopes of other elements also have their uses in society. A tiny proportion of all water molecules $\left(\mathrm{H}_{2} \mathrm{O}\right)$ compose of a hydrogen isotope called deuterium $\left({ }_{1}^{2} H\right)$. Deuterium can be utilised as fuel in nuclear fusion reactors of the future. Other isotopes of various elements are used as radiotracers. These are radioactive isotopes that can be introduced into organisms in food or drugs, and their pathways can be traced by monitoring their radioactivity. These radiotracers have found their way into medical research. The list below shows some radiotracers and their medical applications.

Radiotracers	Area of the body examined	Radiotracers	Area of the body examined
${ }^{131} \mathrm{I}$	Thyroid	87 Sr	Bones
${ }_{53}^{59} \mathrm{Fe}$ and ${ }_{24}^{51} \mathrm{Cr}$	Red Blood Cells	${ }^{38} \mathrm{Sr}$	${ }^{99} \mathrm{Tc}$
${ }^{99} 92 \mathrm{Mo}$	Metabolism	${ }^{133} \mathrm{Xeart}$, Bones, Liver, and Lungs	
${ }_{42}^{32} \mathrm{P}$	Eyes, Liver, Tumours	${ }_{54}^{24} \mathrm{Ne}$	Lungs
${ }_{15} \mathrm{P}$	${ }_{11} \mathrm{Na}$	Circulatory System	

Using the same rule, the energy level diagram of an isotope can be drawn as well. Recall that the superscript is the atomic mass of the isotope and the subscript is the atomic number. Since the atomic mass of the isotope is different than the atomic mass of the original element, the number of neutrons of the isotope is different than the number of neutrons of the element.

Electron Shells, Energy Levels and Valence Electrons:

Recall from the Bohr Model studied earlier. It states that electrons travel around the nucleus in specified orbits (electrons are quantum). These orbits are called energy levels. They can also be called electron shells. These orbits are very similar to the planets orbiting our sun. The only difference is that each orbit can accommodate more than one electron at a time. The following table shows the maximum number of electrons each successive "orbit" or energy level allows.

Energy Level	Maximum Number of Electrons Allowed
$1^{\text {st }}$	2
$2^{\text {nd }}$	8
$3^{\text {rd }}$	8
$4^{\text {th }}$	18
$5^{\text {th }}$	18
$6^{\text {th }}$	32
$7^{\text {th }}$	32

To put electrons in the shells, we have to fill the first energy level until it is full before we can start filling the next energy level. If the second energy level is filled, then we can put electrons in the third energy level and so on. This process is repeated until all the electrons are used up. The following diagrams illustrate the point above.

Valence Electrons: - the electrons in the outermost shell.
Example 2: Draw the Bohr Energy Level diagram for the first 10 elements. State the number of protons, electrons, and neutrons as well as the location for each of these elements.

Element: Lithium (Li)

Atomic Number: 3 Atomic Mass: 6.94 Nucleus: $3 p^{+}$and $4 n$
$2^{\text {nd }}$ Energy Level: 1 e $^{-} \quad$ (1 valence e^{-})
$\frac{1^{\text {st }} \text { Energy Level: } 2 \mathrm{e}^{-}}{\text {Total: } 3 \mathrm{e}^{-}}$
Location on the Period Table of Elements: Second Row; Column IA

Element: Beryllium (Be)

Atomic Number: 4 Atomic Mass: 9.01 Nucleus: $4 p^{+}$and 5 n
$2^{\text {nd }}$ Energy Level: 2 e $^{-} \quad$ (2 valence e ${ }^{-}$)
$\frac{1^{\text {st }} \text { Energy Level: } 2 \mathrm{e}^{-}}{\text {Total: } 4 \mathrm{e}^{-}}$
Location on the Period Table of Elements: Second Row; Column IIA

Element: Boron (B)

Atomic Number: 5 Atomic Mass: 10.81 Nucleus: $5 p^{+}$and $6 n$
$2^{\text {nd }}$ Energy Level: 3 e $^{-} \quad$ (3 valence e^{-})
$\mathbf{1}^{\text {st }}$ Energy Level: $2 \mathrm{e}^{-}$
Total: $5 \mathrm{e}^{-}$
Location on the Period Table of Elements: Second Row; Column IIIA

Element: Carbon (C)
Atomic Number: 6 Atomic Mass: 12.01 Nucleus: $6 p^{+}$and $6 n$ $2^{\text {nd }}$ Energy Level: 4 e $^{-} \quad$ (4 valence e ${ }^{-}$) $\frac{1^{\text {st }} \text { Energy Level: } 2 \mathrm{e}^{-}}{\text {Total: } 6 \mathrm{e}^{-}}$

Location on the Period Table of Elements: Second Row; Column IVA

Element: Nitrogen (N)
Atomic Number: 7 Atomic Mass: 14.01 Nucleus: $7 p^{+}$and 7 n
$2^{\text {nd }}$ Energy Level: $5 \mathrm{e}^{-} \quad$ (5 valence e ${ }^{-}$)
$\frac{1^{\text {st }} \text { Energy Level: } 2 \mathrm{e}^{-}}{\text {Total: } 7 \mathrm{e}^{-}}$
Location on the Period Table of Elements: Second Row; Column VA

Element: Oxygen (O)
Atomic Number: 8 Atomic Mass: 16.00 Nucleus: $8 p^{+}$and 8 n
$2^{\text {nd }}$ Energy Level: 6 e $^{-} \quad$ (6 valence e^{-})
$\mathbf{1}^{\text {st }}$ Energy Level: $2 \mathrm{e}^{-}$

Total: $8 \mathrm{e}^{-}$

Location on the Period Table of Elements: Second Row; Column VIA

One way to remember the maximum number of electrons for each energy level is to look at the Periodic Table of Elements. There are 2 elements in the first row, hence 2 electrons are allowed in the first energy level. There are 8 elements each in the second and third rows, hence 8 electrons are allowed in each of the second and third energy level. This pattern repeats itself for higher energy levels.

Example 3: Draw the Bohr Energy Level diagram for tritium, ${ }_{1}^{3} \mathrm{H}$ and carbon-14. State the number of protons, electrons, and neutrons as well as the location for each of these elements.

Isotope: Tritium (${ }_{1}^{3} \mathrm{H}$)

Atomic Number: 1 Atomic Mass: $3 \quad$ Nucleus: $1 p^{+}$and $2 n$
$\mathbf{1}^{\text {st }}$ Energy Level: $1 \mathrm{e}^{-}$
(1 valence e^{-})
Total: $1 \mathrm{e}^{-}$

Isoptope: Carbon-14 (${ }_{6}^{14} \mathrm{C}$)
Atomic Number: 6 Atomic Mass: 14.01 Nucleus: $6 p^{+}$and 8 n
$2^{\text {nd }}$ Energy Level: 4 e $^{-} \quad$ (4 valence e^{-})
$\frac{\mathbf{1}^{\text {st }} \text { Energy Level: } 2 \mathrm{e}^{-}}{\text {Total: } 6 \mathrm{e}^{-}}$

2.5: Molecules and Ions

Molecule: - basic unit of a compound.

Assignment

2.3 pg. 54 \#10 to 16 (even)

- contains at least two atoms of the same or different kind of elements.

Ions: - when atoms lose or gain electrons, they attain a positive or negative charge.

1. Cations: - positive charged ions (atoms that lose electrons).

- to name cations \rightarrow element name follows by the word "ion"

Example 1: Draw the energy level diagram for the following cations.
a. Sodium ion $=\mathrm{Na}^{+}\left(11 \mathrm{p}^{+}\right.$and $\left.10 \mathrm{e}^{-}\right)$

Sodium Ion ($\mathbf{N a}^{+}$)

Atomic Number: 11
Atomic Mass: 22.99
Nucleus: $11 \mathbf{p}^{+}$and $12 \mathbf{n}$
$2^{\text {nd }}$ Energy Level: $8 \mathrm{e}^{-} \quad$ (8 valence e^{-}- Filled)
$\mathbf{1}^{\text {st }}$ Energy Level: $2 \mathrm{e}^{-}$
Total: $10 \mathrm{e}^{-} \quad$ Net Charge $=1+$
Location on the Period Table of Elements:
Third Row; Column IA
b. Calcium ion $=\mathrm{Ca}^{2+}\left(20 \mathrm{p}^{+}\right.$and $\left.18 \mathrm{e}^{-}\right)$

Calcium Ion ($\mathbf{C a}^{2+}$)
Atomic Number: 20
Nucleus: $20 \mathrm{p}^{+}$and 20 n
$3^{\text {rd }}$ Energy Level: $8 \mathrm{e}^{-} \quad$ (8 valence e^{-}- Filled)
$2^{\text {nd }}$ Energy Level: $8 \mathrm{e}^{-}$
$1^{\text {st }}$ Energy Level: $2 \mathrm{e}^{-}$
Total: $18 \mathrm{e}^{-} \quad$ Net Charge $=2+$
Location on the Period Table of Elements:
Fourth Row; Column IIA

2. Anions: - negative charged ions (atoms that gain electrons).

- to name anions \rightarrow keep the first part of element name follow by suffix \sim ide

Example 2: Draw the energy level diagram for the following anions.
a. Chloride $=\mathrm{Cl}^{-}\left(17 \mathrm{p}^{+}\right.$and $\left.18 \mathrm{e}^{-}\right)$

b. Oxide $=\mathrm{O}^{2-}\left(8 \mathrm{p}^{+}\right.$and $\left.10 \mathrm{e}^{-}\right)$

Chloride (Cl^{-})

Atomic Number: 17
Nucleus: $17 \mathrm{p}^{+}$and 18 n
$3^{\text {rd }}$ Energy Level: $8 \mathrm{e}^{-} \quad$ (8 valence e^{-}- Filled)
$2^{\text {nd }}$ Energy Level: $8 \mathrm{e}^{-}$
$\mathbf{1}^{\text {st }}$ Energy Level: $2 \mathrm{e}^{-}$
Total: $18 \mathrm{e}^{-} \quad$ Net Charge $=1-$
Location on the Period Table of Elements:
Third Row; Column VIIA

Oxide (O^{2-})
Atomic Number: 8
Nucleus: $8 \mathbf{p}^{+}$and 8 n
$2^{\text {nd }}$ Energy Level: $8 \mathrm{e}^{-}$
$\underline{1^{\text {st }} \text { Energy Level: } 2 \mathrm{e}^{-}}$
Total: $10 \mathrm{e}^{-}$
Atomic Mass: 16.00
(8 valence e^{-}- Filled)
Net Charge $=2-$

Location on the Period Table of Elements:

Second Row: Column VIA

Octet Rule: - the tendency for electrons to fill the second and third energy levels (8 valence electrons - for main groups - IA to VIIIA columns) to achieve stability.

- in most cases, this means having the same electron arrangement of the nearest noble gas. - exceptions to the rule include helium (only 2 electrons to fill the first energy level), and the transition metals.

2.4: The Periodic Table

Assignment

2.5 pg. $54-55$ \#26 to 34 (even)

Mendeleev's Periodic Table of Elements: - Dmitri Mendeleev organized the elements on a table based on the atomic masses as well as the "recurring" chemical and physical properties.

- the columns of elements with the same chemical and physical properties are called groups or families.
- the rows of the elements where they exhibit a gradual change in chemical properties are called periods.

Metals and Non-Metals

The 2 main categories of the Periodic Table of Elements are the metals and non-metals. They are divided by the "staircase" on the table. This "staircase" can be found at the element Boron extending down to the element Astatine. Metals are the elements at the left side of the "staircase", and non-metals are the elements at the right side of the "staircase".

Note: Hydrogen is placed at the metal side but is considered a non-metal.
Physical Properties: - are the properties or characteristics of a substance that can be change without involving the chemical change in its composition.

Physical Properties of Metals (with the exception of hydrogen):

1. Metals are mostly solids at room temperature (with the exception of mercury).
2. Metals are malleable (they can be hammered into thin sheets).
3. Metals are ductile (they can be pulled into wires).
4. Metals are good conductors of heat and electricity.
5. Metals are lustrous (shiny).

Physical Properties of Non-Metals:

1. Non-metals are mostly gases or solids at room temperature (with the exception of bromide).
2. Non-metals usually do not have the physical properties of metals.

Some elements near the "staircase" exhibit both the properties of metals and non-metals. These elements are referred to as metalloids. An example is silicon. It is often used as a semiconductor material (an electrical conductor that can conduct and an insulate electricity). Other metalloids are boron, germanium, arsenic, antimony, tellurium, polonium, and astatine.

Periods and Groups: Chemical Properties of Elements

Chemical Properties: - the properties of a substance that involves a change in the organisation of atoms (mainly the sharing or transfer of electrons).

The shape of the Periodic Table of Elements is a structural way to organize elements. The vertical columns of the Table are called groups or families. As we have seen before, the column number is the same as the number of valence electrons of the elements. Since chemical properties depend greatly on the number of valence electrons, all elements within the same group or family must have similar chemical properties. We have already seen one such family, the noble gases. All elements of this group are nonreactive and very stable (recall the valence electron shell of these elements is full). The names of other families and their general chemical properties are listed below.

Groups or Families	Chemical Properties
Alkali Metals (IA)	very reactive metals
Alkaline Earth Metals (IIA)	less reactive than alkali metals
Halogens (VIIA)	very reactive non-metals
Noble Gases (VIIIA)	very stable; all are gaseous state at room temperature

Periods: - "rows" of elements that are identify by their highest energy level.

- the pattern of chemical properties "repeats" for every row.

Today, all elements and their symbols are listed in an orderly fashion with the help of the Periodic Table of Elements. The use of standardized symbols allows scientists from all over the world to share their knowledge despite the differences in language. Most elements are monoatomic. That means their atoms can exist individually ("mono" means one). Others are diatomic, atoms that exist in pairs ("di" means two). Some are polyatomic, atoms that exist in numbers more than one ("poly" means many). The table below shows all the diatomic and polyatomic elements.

Diatomic Elements (all the \sim gens, including Halogens - second last column of the Periodic Table)	Polyatomic Elements	Monoatomic Elements
Hydrogen $\left(\mathrm{H}_{2}\right)$, Oxygen $\left(\mathrm{O}_{2}\right)$,	Phosphorus $\left(\mathrm{P}_{4}\right)$	All other Elements.
Nitrogen $\left(\mathrm{N}_{2}\right)$, Fluorine $\left(\mathrm{F}_{2}\right)$,	Sulphur $\left(\mathrm{S}_{8}\right)$	Examples: Helium (He), Iron (Fe),
Chlorine $\left(\mathrm{Cl}_{2}\right)$, Bromine $\left(\mathrm{Br}_{2}\right)$,		Calcium (Ca), Silver (Ag),
Iodine $\left(\mathrm{I}_{2}\right)$	Mercury (Hg)	

Note: Students should memorize all the diatomic and polyatomic elements. They are the only exceptions. All other elements are monoatomic. Most symbols are recognizable from the name of the elements (Zinc: Zn; Carbon: C; Aluminium: Al). Others look somewhat different. This is because the symbols came from the elements' Latin names (Silver: Ag for "Argentum"; Gold: Au for "Aurum"). To save time, students should also familiarize themselves with the whereabouts of the elements on the Table.
$\underline{\text { Transition Metals (1B to 10B): - groups and periods of metals that can have varying charges. }}$

- use Roman Numerals as part of their ionic names.

Example: Fe^{3+} and Fe^{2+} ions

(First Charge Listed is the most common type)

Chemical Properties of Metals and Non-Metals:

1. Metals lose electrons to become positive ions - cations.
2. Non-Metals gain electrons to become negative ions - anions.
3. Hydrogen usually loses an electron to become a H^{+}ion. However, it can sometimes gain an electron to become H^{-}(Hydride).
4. The last column of the Table of Elements does not usually form ions. These elements are called the Noble Gases (Helium, Neon, Argon, Krypton, Xenon, and Radon).
5. The number of electrons an atom loses or gains depends on which column (vertical) the element is at the Table.

The reason that noble gases (column VIIIA) do not form ions is because their outermost shells are filled with the maximum number of electrons allowed. That is why we call this group of elements "noble gases". They do not form ions because they are stable. Hence we use the word "noble" to describe them. All the other elements form ions because they want to achieve stability like the noble gases. If you observe carefully, oxide has the same number of electrons as the nearest noble gas, neon. On the other hand, calcium ion has the same number of electrons as the nearest noble gas, argon. In terms of stability, which is another word for lower energy state, these ions are more stable than their respective atoms.

Since the number of valence electrons of an atom is the same as its column number, all the elements of column IA have 1 valence electron. As we see with lithium, all they have to do is to lose that valence electron to achieve a noble gas "like" state. For elements in column IIA, they all have 2 valence electrons. Hence, they lose 2 electrons to acquire stability and become ions with a net charge of +2 . The following table summarizes these points.

Column	Number of Valence Electrons	Methods to achieve a Stable State	Net Charge of Ions
IA	1	lose 1 electron or gain 7 electrons	+1
IIA	2	lose 2 electrons or gain 6 electrons	+2
IIIA	3	lose 3 electrons or gain 5 electrons	+3
IVA	4	lose 4 electrons or gain 4 electrons	+4
VA	5	lose 5 electrons or gain 3 electrons	-3
VIA	6	lose 6 electrons or gain 2 electrons	-2
VIIA	7	lose 7 electrons or gain 1 electron	-1
VIIIA	8	already has the maximum number of electrons allowed in the outermost electron shell.	0

Ionic Compound: - when a metal element combines with a non-metal element.

- forms ionic bonds (electrons are "stolen" or "transferred" from one atom to another).
- dissociates into electrolytes (forms ions, cations and anions, when dissolve in water).

Example: LiF

Molecular Compound: - when a non-metal element combines with a non-metal element.

- forms covalent bonds (electrons are "shared" between atoms).
forms non-electrolytes (do not dissociate into ions when dissolve in water).
Example: CH_{4}

Monoatomic Ions: - ions that came from a single atom (include metal cations and non-metal anions).

- monoatomic anion ends with suffix \sim ide.
- some transition metal ions require Roman Numeral when there can be more than one type of charge.

Examples: $\quad \mathrm{Na}^{+}=$sodium ion, $\mathrm{Cl}^{-}=$chloride, $\mathrm{Pb}^{4+}=$ lead (IV) ion, $\mathrm{Zn}^{2+}=$ zinc ion
Polyatomic Ions: - ions that contain many atoms.

- mostly anions (except $\mathrm{NH}_{4}{ }^{+}=$ammonium ion).
- most ends with suffixes $\sim a t e$ or \sim ite (some ends with suffix $\sim i d e$).

Examples: $\mathrm{CO}_{3}{ }^{2-}=$ carbonate, $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}=$ dichromate, $\mathrm{OH}^{-}=$hydroxide, $\mathrm{SO}_{3}{ }^{2-}=$ sulfite

2.6: Chemical Formulas

Assignment
2.4 pg. 54 \#18 to 24 (even)

Chemical Formulas: - using atomic symbols, they express the compositions of molecular and ionic compounds.

Allotropes: - different distinct forms of an element. (Example: Carbon as diamond or graphite)
Structural Formula: - a diagram that shows how the atoms in a molecule are bonded and arranged
Example: Ethanol has a chemical formula $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.

(Note that we do not combine the H in the chemical formula because we want to emphasize the molecular structure.)

Page 24.

Empirical Formula: - the simplest ratio between the elements in a chemical formula.
Molecular Formula: - the actual chemical formula of a compound.

$$
\begin{aligned}
& {\text { Molecular Formula }=(\text { Empirical Formula })_{n}}^{\text {where } n=\text { natural number }}
\end{aligned}
$$

Example:

$$
\begin{array}{cc}
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} & \rightleftharpoons \\
\text { Molecular Formula for Glucose } & \mathrm{CH}_{2} \mathrm{O} \\
\text { Empirical Formula }
\end{array}
$$

2.7A: Naming Simple Ionic Compounds

Organic Compounds: - sometimes called hydrocarbons which contain carbon and hydrogen, and may also contain oxygen, nitrogen and sulphur.

Inorganic Compounds: - compounds that are not hydrocarbons.
Nomenclature: - a naming system.
IUPAC: - International Union of Pure and Applied Chemistry.

- an organization that oversees the standard regarding chemistry including chemical nomenclature.

Nomenclature of Ionic Compounds

1. Balance the Cation and Anion Charges.
2. Use brackets for multiple Polyatomic Ions.
3. When naming, use ~ide for the non-metal anions.
4. Metals that can have two or more different charges must use Roman Numerals in the names.

Example 1: Write the chemical formula of the followings.
a. sodium chloride
b. calcium fluoride
c. ammonium sulfate

Need $1 \mathrm{Na}^{+} \& \mathbf{1 ~ C l}^{-}$to balance charges

$\mathrm{NH}_{4}{ }^{+}$and $\left.\mathrm{SO}_{4}{ }^{2-} \Rightarrow \mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

$\mathbf{2}\left(\mathrm{NH}_{4}{ }^{+}\right) \&$
charges

d. magnesium hydroxide
e. tin (IV) sulfite
Mg^{2+} and $\mathrm{OH}^{-} \Rightarrow \mathrm{Mg}(\mathbf{O H})_{2}$
Need $1 \mathbf{M g}^{2+} \& 2\left(\mathbf{O H}^{-}\right)$to balance charges
Sn^{4+} and $\mathrm{SO}_{3}{ }^{2-} \Rightarrow \mathbf{S n}\left(\mathbf{S O}_{3}\right)_{2}$
Need $1 \mathrm{Sn}^{4+}$ (IV means 4+ charge) \& $2\left(\mathrm{SO}_{3}{ }^{2-}\right)$ to balance charges
f. aluminium oxide

$$
\mathrm{Al}^{3+} \text { and } \mathrm{O}^{2-} \Rightarrow \mathrm{Al}_{2} \mathbf{O}_{3}
$$

Need $2 \mathbf{A l}^{3+} \& 3 \mathbf{O}^{2-}$ to balance charges

Oxoanions: - a series of polyatomic ions that contains different number of oxygen atoms.

$\mathrm{SO}_{4}{ }^{2-}$ sulfate	$\mathrm{ClO}_{4}{ }^{-}$perchlorate
$\mathrm{SO}_{3}{ }^{2-}$ sulfite	$\mathrm{ClO}_{3}{ }^{-}$chlorate
$\mathrm{NO}_{3}{ }^{-}$nitrate	$\mathrm{ClO}_{2}{ }^{-}$chlorite
$\mathrm{NO}_{2}{ }^{-}$nitrite	ClO^{-}hypochlorite

Example 2: Name the following oxoanions.
a. BrO_{4}^{-}
$\mathrm{BrO}_{3}{ }^{-}$
$\mathrm{BrO}_{2}{ }^{-}$
BrO^{-}

BrO_{4}^{-}	perbromate
BrO_{3}^{-}	bromate
BrO_{2}^{-}	bromite
BrO^{-}	hypobromite

b. IO_{4}^{-}
$\mathrm{IO}_{3}{ }^{-}$
$\mathrm{IO}_{2}{ }^{-}$

IO_{4}^{-}	periodate
IO_{3}^{-}	iodate
IO_{2}^{-}	iodite
IO^{-}	hypoiodite

Example 3: Name the following ionic compounds.
a. $\mathrm{Na}_{2} \mathrm{~S}$
b. KMnO_{4}

c. $\mathrm{Li}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

d. $\mathrm{CuCr}_{2} \mathrm{O}_{7}$
e. $\mathrm{Fe}_{3}\left(\mathrm{BO}_{3}\right)_{2}$
f. $\mathrm{Ti}\left(\mathrm{BrO}_{3}\right)_{3}$

Hydrate: - ionic compounds sometimes come with water molecule locked in their crystal form.

- to name hydrates \rightarrow use the ionic compound name, then write the prefix follow by the word "hydrate".

Prefixes for Hydrates

$1-$ mono	$4-$ tetra	$7-$ hepta	$10-$ deca
$2-$ di	$5-$ penta	$8-$ octa	
$3-$ tri	$6-$ hexa	$9-$ nona	

Example: $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$ copper (II) sulfate pentahydrate

2.7B: Naming Simple Molecular Compounds and Acids

Nomenclature of Molecular Compounds

1. Do NOT use charges to balance subscripts. Use prefixes to name or write the formula's subscripts.
2. If the first element has one atom in the molecule, do NOT use mono as a prefix.
3. The last element uses the suffix \sim ide.

Prefixes for Binary Molecular Compounds

$1-$ mono	$4-$ tetra	$7-$ hepta	$10-$ deca
$2-$ di	$5-$ penta	$8-$ octa	
$3-$ tri	$6-$ hexa	$9-$ nona	

Example 1: Name the following molecular compounds.
a. CO
1 Carbon and 1 Oxygen
Carbon monoxide
b. CO_{2}
1 Carbon and 2 Oxygen
Carbon dioxide
c. $\mathrm{N}_{2} \mathrm{O}_{4}$
2 Nitrogen and 4 Oxygen
dinitrogen tetraoxide

Example 2: Provide the chemical formula for the following compounds.
a. sulfur trioxide
1 S and $3 \mathrm{O} \Rightarrow \mathbf{S O}_{3}$
b. diphosphorus pentaoxide

c. silicon dioxide

1 Si and $2 \mathrm{O} \Rightarrow \mathbf{S i O}_{2}$

Common Names for Some Molecular Compounds (Memorize!)

$\mathrm{H}_{2} \mathrm{O}$	Water	$\mathrm{H}_{2} \mathrm{O}_{2}$	Hydrogen Peroxide	O_{3}	Ozone	CH_{4}	Methane
$\mathrm{C}_{3} \mathrm{H}_{8}$	Propane	NH_{3}	Ammonia	$\mathrm{CH}_{3} \mathrm{OH}$	Methanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	Ethanol
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	Glucose	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	Sucrose				

Note: Do NOT use prefixes for the above common molecular compounds!

Acid: - an ionic substance when dissolves in water produces an H^{+}ion.

- chemical formula usually starts with H .
- always in aqueous state (aq).

$$
\mathbf{H}^{+}+\text {Anion } \rightarrow \text { Acid }
$$

Example: $\mathrm{HCl}_{(g)} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{HCl}_{(a q)}$
Nomenclature of Acid

	Ionic Compound Name		Acid Name
1.	hydrogen ~ide	\rightarrow	hydro~ic acid
2.	hydrogen \sim ate	\rightarrow	\sim ic acid
3.	hydrogen \sim ite	\rightarrow	\sim ous acid

Example 3: Name the following acids.
a. $\mathrm{HBr}_{(a q)}$
hydrogen bromide
hydrobromic acid
b. $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)$
hydrogen sulfate
sulfuric acid
c. $\mathrm{H}_{2} \mathrm{SO}_{3(a q)}$
hydrogen sulfite
sulfurous acid

Example 4: Provide chemical formula for the following acids.
a. hydrosulfuric acid
hydrosulfuric acid
hydrogen sulfide $\Rightarrow \mathbf{H}^{+}$and S^{2-}

b. acetic acid
acetic acid \Rightarrow hydrogen acetate H^{+}and $\mathrm{CH}_{3} \mathrm{COO}^{-}$
c. hypochlorous acid
hypochlorous acid
hydrogen hypochlorite
$\Rightarrow \quad \mathbf{H}^{+}$and ClO^{-}
$\mathrm{HClO}_{(a q)}$

Oxoacids: - acids that consist of oxoanions.
Examples: $\mathrm{HBrO}_{4(a q)}$ - perbromic acid; $\mathrm{HIO}_{2(a q)}$ - iodous acid

Summary of Naming and Formula Writing

1. Identify whether the compound is ionic, molecular or acid. (Hint: if there is a metal or a polyatomic ion, it is ionic).
2. Molecular compound uses prefixes. They have no charges.
3. Ionic compounds require balancing of charges. Some transition metal cations need to be specified with roman numerals.
4. Acids are originally named "hydrogen - anion name. They are all in aqueous state. All acids use special naming rules depending on the suffix of the anion.

Assignment

2.6 pg. 55 \#36, 38, 42, 44, 46
2.7 pg. 55 \#47 to 50

Chapter 3: Stoichiometry

3.1: Atomic Mass

Atomic Mass: - sometimes called atomic weight.

- the mass of the atom in atomic mass unit (amu).
$-1 \mathrm{amu}=$ exactly one-twelfth the mass of one carbon-12 atom $\approx 1.67 \times 10^{-27} \mathrm{~kg}$.
Average Atomic Mass: - Average Mass of an atom and its isotopes after accounting their proportions of abundance (as stated on the Periodic Table of Elements).

Relative Abundance: - the relative proportion of various isotopes of an element.
Example 1: State the Average Atomic Mass Unit for hydrogen if it is made of 99.48% of ${ }_{1}^{1} \mathrm{H}, 0.2400 \%$ of ${ }_{1}^{2} \mathrm{H}$, and 0.2800% of ${ }_{1}^{3} \mathrm{H}$.

$$
\begin{aligned}
& \text { Average amu of Hydrogen }=\underbrace{(0.9948)(1)}_{\text {9.9.9.48\% of Atomic Mass } 1}+\underbrace{(0.0400 \% \text { of Atomic Mass } 2}_{\text {Average amu of Hydrogen }=\mathbf{1 . 0 0 8}}+\underbrace{(0.002800)(3)}_{0.2800 \% \text { of Atomic Mass } 3}
\end{aligned}
$$

Example 2: Lithium has two naturally occurring isotopes. Lithium-6 has an atomic mass of 6.015 amu ; lithium- 7 has an atomic mass of 7.016 amu . The average atomic mass of lithium is 6.941 amu . Determine whether lithium-6 or lithium-7 is the naturally occurring atom and their percentages of abundance.

Let $x=$ the proportion of lithium-6
Then $(1-x)=$ proportion of lithium-7
Note: Since the average atomic mass of lithium is 6.941 , which is closer to the amu of lithium-7, we can assume that the most abundant isotope is lithium-7.

Average amu of Lithium $=(x)(6.015)+(1-x)(7.016)$

6.941	$=6.015 x+7.016-7.016 x$		(Multiply into binomial)
$6.941-7.016$	$=6.015 x-7.016 x$		(Combine Like-Terms)
-0.075	$=-1.001 x$		(Solve for $x)$
$\frac{-0.075}{-1.001}$	$=x$		
x	$=0.07492507$		(Need to round to 4 significant digits)
Lithium- 6 occurs 7.493%.			
Lithium-7 occurs $(\mathbf{1 0 0 \%} \mathbf{- 7 . 4 9 3 \%})=\mathbf{9 2 . 5 1 \%}$			

3.2: Avogadro's Number and the Molar Mass of an Element

Mole (mol): - a group of atoms or molecules numbered $\mathbf{6 . 0 2 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ (Avogadro's Number, N_{A})
Examples: 1 mol of carbon $(\mathrm{C})=6.022 \times 10^{23}$ carbon atoms $=12.01 \mathrm{~g}$ (same as the amu)
1 mol of oxygen $\left(\mathrm{O}_{2}\right)=6.022 \times 10^{23}$ oxygen molecules $=32.00 \mathrm{~g}$ (include subscripts with amu)
Example 1: Calculate the mass of 250 atoms of gold.

$$
1 \mathrm{~mol} \mathrm{Au}=196.97 \mathrm{~g} \mathrm{Au}=6.022 \times 10^{23} \mathrm{Au} \text { atoms }
$$

$$
250 \text { atoms } \times \frac{196.97 \mathrm{~g}}{6.022 \times 10^{23} \text { atems }}
$$

$$
8.177 \times 10^{-20} \mathrm{~g} \text { of } \mathrm{Au}
$$

Example 2: Determine the number of molecules for 50.0 mg of oxygen.

$$
\begin{aligned}
& 1 \mathrm{~mol} \mathrm{O}_{2}=32.00 \mathrm{~g} \mathrm{O}_{2}=6.022 \times 10^{23} \mathrm{O}_{2} \text { molecules } \\
& (16.00 \times 2)
\end{aligned}
$$

$$
\begin{aligned}
& 50.0 \mathrm{mg}=0.0500 \mathrm{~g} \\
& 0.0500 \mathrm{~g} \times \frac{6.022 \times 10^{23} \text { molecules }}{32.00 \mathrm{~g}}
\end{aligned}
$$

3.3: Molecular Mass

Molar Mass ($\mathbf{g} / \mathbf{m o l}$): - sometimes refer to as molecular mass or molecular weight, is the mass per one mole of atoms or molecules.

- molar mass of a mono-atomic element is the same as the atomic mass.
- molar mass of a compound, binary element, or polyatomic element is the same as the combine atomic masses of all atoms in the molecule.

Example 1: Find the molar mass of the following.
a. aluminium
b. nitrogen
c. water

d. lead (IV) nitrate

e. sucrose

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=(12 \times 12.01)+(22 \times 1.008) \\
&+(11 \times 16.00) \\
& \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=342.3 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Converting between Mass and Moles:

$$
\begin{array}{rr}
\text { Moles }(\mathrm{mol})=\frac{1}{\operatorname{Mass}(\mathrm{~g})} \\
n=\text { molar Mass }(\mathrm{g} / \mathrm{mol}) & n=\frac{m}{M} \\
n \quad m=\text { mass } & M=\text { Molar mass }
\end{array}
$$

Example 2: Calculate the number of moles for
a. 20.0 g of magnesium chloride
b. 4.52 mg of glucose

$$
\begin{array}{ll}
\mathrm{MgCl}_{2}=24.30+2(35.45) & M=95.20 \mathrm{~g} / \mathrm{mol} \\
n=\frac{m}{M}=\frac{20.0 \mathrm{~g}}{95.20 \mathrm{~g} / \mathrm{mol}} & n=\mathbf{0 . 2 1 0} \mathrm{mol}
\end{array}
$$

$$
\begin{aligned}
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} & =6(12.01)+12(1.008)+6(16.00) \\
M & =180.2 \mathrm{~g} / \mathrm{mol} \\
n=\frac{m}{M} & =\frac{4.52 \mathrm{mg}}{180.2 \mathrm{~g} / \mathrm{mol}} \quad n=\mathbf{0 . 0 2 5 1} \mathrm{mmol}
\end{aligned}
$$

Example 3: Determine the mass of the following amount.
a. 8.52 mol of ozone
b. 24.7 mmol of phosphoric acid

$$
\begin{aligned}
& \mathrm{O}_{3}=3(16.00) \quad M=48.00 \mathrm{~g} / \mathrm{mol} \\
& n=\frac{m}{M} \\
& \boldsymbol{m}=\boldsymbol{n M}=(8.52 \mathrm{mel})(48.00 \mathrm{~g} / \mathrm{mol}) \\
& m=409 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}=3(1.008)+30.97+4(16.00) \quad M=97.99 \mathrm{~g} / \mathrm{mol} \\
& n=\frac{m}{M} \\
& \boldsymbol{m}=\boldsymbol{n} \boldsymbol{M}=(24.7 \mathrm{mm@l})(97.99 \mathrm{~g} / \mathrm{m@l})=2420.353 \mathrm{mg} \\
& \quad \boldsymbol{m}=\mathbf{2 . 4 2 \times 1 0 ^ { 3 } \mathbf { m g } = 2 . 4 2 \mathrm { g }}
\end{aligned}
$$

3.4: The Mass Spectrometer

Mass Spectrometer: - an instrument that measures the relative abundance of an element.

- uses magnetic and electric fields to deflect different charged isotopes. The heavier the isotope, the bigger the radius of the particle (deflected least).
- the result can be graphed into a mass spectrum.

Schematic representation of one type of mass spectrometer. An electron beam fragments gas atoms or molecules into positively charged ions. The ions are accelerated and then deflected by a magnet. More massive particles are deflected by smaller amounts than less massive particles.

Assignment

3.1 pg. 86 \#4, 6,8
3.2 pg. 86-87 \#10, 13 to 16, 18 to 20, 22
3.3 pg .87 \#24 to 30 (even)

3.5 \& 3.6: Percent Composition of Compounds \& Experimental Determination of Empirical Formulas

Mass Percent: - also called percent composition by mass.

- it is the mass percentage of each element in a compound.

For Compound $\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}} \mathrm{C}_{\mathrm{z}}$ with its Total Mass (m), the Mass Percentages are:

$$
\% \mathrm{~A}=\frac{m_{A}}{m} \times 100 \% \quad \% \mathrm{~B}=\frac{m_{B}}{m} \times 100 \% \quad \% \mathrm{C}=\frac{m_{C}}{m} \times 100 \%
$$

For Compound $\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}} \mathrm{C}_{\mathrm{z}}$ with its Molar Mass (\boldsymbol{M}), the Mass Percentages are:

$$
\% \mathrm{~A}=\frac{(x)\left(M_{A}\right)}{M} \times 100 \% \quad \% \mathrm{~B}=\frac{(y)\left(M_{B}\right)}{M} \times 100 \% \quad \% \mathrm{C}=\frac{(\mathrm{z})\left(M_{C}\right)}{M} \times 100 \%
$$

Example 1: Calculate the mass percentage of sodium chromate.
$\mathrm{Na}_{2} \mathrm{CrO}_{4} \quad M=161.98 \mathrm{~g} / \mathrm{mol}$
Assume we have $161.98 \mathrm{~g}(1 \mathrm{~mole})$ of $\mathrm{Na}_{2} \mathrm{CrO}_{4}$, there are 2 moles of $\mathrm{Na}, 1$ mole of Cr and 4 moles of O :

$$
\begin{array}{ll}
\% \mathrm{Na}=\frac{(2 \mathrm{mel})(22.99 \mathrm{~g} / \mathrm{mel})}{161.98 \mathrm{~g}} \times 100 \%=28.38622052 \% & \% \mathrm{Na}=28.39 \% \\
\% \mathrm{Cr}=\frac{(1 \mathrm{mel})(52.00 \mathrm{~g} / \mathrm{mel})}{161.98 \mathrm{~g}} \times 100 \%=32.10272873 \% & \% \mathrm{Cr}=\mathbf{3 2 . 1 0} \% \\
\% \mathrm{O}=\frac{(4 \mathrm{mel})(16.00 \mathrm{~g} / \mathrm{mel})}{161.98 \mathrm{~g}} \times 100 \%=39.51105075 \% & \% \mathrm{O}=\mathbf{3 9 . 5 1 \%}
\end{array}
$$

Empirical Formula: - the simplest ratio between the elements in a chemical formula.
Molecular Formula: - the actual chemical formula of a compound.

> Molecular Formula $^{=}(\text {Empirical Formula })_{n}$ $$
\text { where } n=\text { natural number }
$$

Example:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

$\mathrm{CH}_{2} \mathrm{O}$
Molecular Formula for Glucose Empirical Formula
Note: Knowing the mass percentages of a compound allow us to find the empirical formula. To know the molecular formula, we must also know the molar mass.

Example 1: Vitamin C has a molar mass of $176.14 \mathrm{~g} / \mathrm{mol}$ and contains carbon, hydrogen, and oxygen atoms. If the $\%$ mass of carbon and oxygen are 40.91% and 54.50% respectively, determine the empirical and molecular formula of vitamin C.

$$
\% \mathrm{C}=40.91 \% \quad \% \mathrm{O}=54.50 \% \quad \% \mathrm{H}=100 \%-40.91 \%-54.50 \%=4.59 \%
$$

Assume 100 g of Vitamin C. Then, there are

$$
\begin{aligned}
& m_{\mathrm{C}}=100 \mathrm{~g} \times 40.91 \%=40.91 \mathrm{~g} \quad m_{\mathrm{O}}=100 \mathrm{~g} \times 54.50 \%=54.50 \mathrm{~g} \quad m_{\mathrm{H}}=100 \mathrm{~g} \times 4.59 \%=4.59 \mathrm{~g} \\
& n_{\mathrm{C}}=\frac{40.91 \mathrm{~g}}{12.01 \mathrm{~g} / \mathrm{mol}}=3.40632806 \mathrm{~mol}_{\mathrm{C}} \quad n_{\mathrm{H}}=\frac{4.59 \mathrm{~g}}{1.008 \mathrm{~g} / \mathrm{mol}}=4.553571429 \mathrm{~mol}_{\mathrm{H}} \\
& n_{\mathrm{O}}=\frac{54.50 \mathrm{~g}}{16.00 \mathrm{~g} / \mathrm{mol}}=3.40625 \mathrm{~mol}_{\mathrm{O}} \\
& \frac{n_{\mathrm{C}}}{n_{\mathrm{O}}}=\frac{3.40632806 \mathrm{molC}}{3.40625 \mathrm{~mol} \mathrm{O}} \approx \frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{molO}} \quad \begin{aligned}
& n_{\mathrm{H}} \\
& n_{\mathrm{C}}: n_{\mathrm{O}}=1: 1 \longleftarrow \frac{4.553571429 \mathrm{~mol} \mathrm{H}}{3.40625 \mathrm{~mol} \mathrm{O}} \approx 1.33=\frac{4 \mathrm{~mol} \mathrm{H}}{3 \mathrm{molO}} \\
& \text { Combine Ratios } \longrightarrow n_{\mathrm{H}}: n_{\mathrm{O}}=4: 3
\end{aligned}
\end{aligned}
$$

OR

$$
\text { Molecular Formula }=\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}
$$

Another Method may be used where the Actual Molar Mass becomes the Mass of Vitamin used. Then, the Mole of each Atom is calculated to determine the Molecular Formula first.

$$
\begin{aligned}
& n_{\mathrm{C}}=\frac{40.91 \% \times 176.14 \mathrm{~g}}{12.01 \mathrm{~g} / \mathrm{mol}} \approx 6.00 \mathrm{~mol}_{\mathrm{C}} \\
& n_{\mathrm{O}}=\frac{54.50 \% \times 176.14 \mathrm{~g}}{16.00 \mathrm{~g} / \mathrm{mol}} \approx 6.00 \mathrm{~mol}_{\mathrm{O}}
\end{aligned}
$$

$n_{\mathrm{H}}=\frac{4.59 \% \times 176.14 \mathrm{~g}}{1.008 \mathrm{~g} / \mathrm{mol}} \approx 8.00 \mathrm{~mol}_{\mathrm{H}}$
Molecular Formula $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right)$ will be found first, then the Empirical Formula $\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}\right)$ will be stated.

Example 2: Octane, which contains carbon and hydrogen, is burned to produce 4.40 g of carbon dioxide gas and 2.03 g of water vapour. Determine the empirical and molecular formula of octane if it is found to have a molar mass of $114.26 \mathrm{~g} / \mathrm{mol}$ from an analysis using a mass spectrometer.

$$
\begin{aligned}
& n=\frac{4.40 \mathrm{~g}}{44.01 \mathrm{~g} / \mathrm{mol}}=0.0999772779 \mathrm{~mol} \mathrm{CO}_{2} \\
& n_{\mathrm{C}}=0.0999772779 \mathrm{~mol}_{\mathrm{C}}
\end{aligned}
$$

$$
n=\frac{2.03 \mathrm{~g}}{18.02 \mathrm{~g} / \mathrm{mol}}=0.1126526082 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

$$
n_{\mathrm{H}}=0.1126526082 \mathrm{~mol} \times 2=0.2253052164 \mathrm{~mol}_{\mathrm{H}}
$$

$$
\begin{array}{cl}
\frac{n_{\mathrm{H}}}{n_{\mathrm{C}}}=\frac{0.2253052164 \mathrm{~mol} \mathrm{H}}{0.0999772779 \mathrm{molC}} \approx \frac{2.25 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{C}}=\frac{9 \mathrm{~mol} \mathrm{H}}{4 \mathrm{molC}} & \text { Empirical Formula } \left.=\mathbf{C}_{4} \mathbf{H}_{9}\right)(57.11 \mathrm{~g} / \mathbf{m o l}) \\
\frac{\text { Actual Molar Mass }}{\text { Emprical Molar Mass }}=\frac{114.26 \mathrm{~g} \not \mathrm{~mol}}{57.11 \mathrm{~g} \not \mathrm{~mol}} \approx 2 & \text { Molecular Formula }=\text { Empirical Formula } \times 2
\end{array}
$$

Molecular Formula $=\mathbf{C}_{8} \mathbf{H}_{18}$

Example 3: Cobalt (II) nitrate is a hydrate with a chemical formula of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \bullet x \mathrm{H}_{2} \mathrm{O}$. When the 2.45 g of hydrate is heated, 1.54 g of residual is left behind. Determine the number of hydrate unit for cobalt (II) nitrate.
Mass of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}=1.54 \mathrm{~g} \quad$ Mass of $\mathrm{H}_{2} \mathrm{O}$ released $=2.45 \mathrm{~g}-1.54 \mathrm{~g}=0.91 \mathrm{~g}$
$n=\frac{1.54 \mathrm{~g}}{182.95 \mathrm{~g} / \mathrm{mol}}=0.0084176004 \mathrm{~mol} \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \quad n=\frac{0.91 \mathrm{~g}}{18.02 \mathrm{~g} / \mathrm{mol}}=0.0504994451 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

$$
\frac{n_{\mathrm{H}_{2} \mathrm{O}}}{n_{\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}}}=\frac{0.0504994451 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{0.0084176004 \mathrm{~mol} \mathrm{Co}_{3}\left(\mathrm{NO}_{3}\right)_{2}} \approx \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}}
$$

$$
\text { Molecular Formula }=\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}
$$

Assignment

3.5 \& 3.6 pg. $87-88$ \#40 to 54 (even)

3.7: Chemical Reactions and Chemical Equations

Chemical Reaction: - a process where chemical change has taken place.
Chemical Change: - a change where New Substance(s) are formed.
Five Evidences of a Chemical Change: (For a new pure substance formed)

1. Precipitate (New Solid) \downarrow is formed.
2. Colour Change.
3. Presence of Bubbles or New Odour to indicate a New Gas \uparrow.
4. Heat is suddenly Given off or Taken in.
5. Explosion!

Reactants: - chemicals that go into a reaction.
Products: - chemicals that are produced from a reaction.

$$
\text { Reactants } \xrightarrow{\text { "yields" }} \text { Products }
$$

Chemical Word Equation: - a chemical reaction written out in words.
Chemical Equation: - uses chemical symbols to represent what happens in a chemical reaction.
States of Chemicals: - (s) solid, (l) liquid, (g) gas, $(a q)$ aqueous - dissolved in water

There are 5 basic types of chemical reactions:

1. Formation, Composition or Synthesis
(Many Elements \rightarrow Compound or Many Reactants \rightarrow Single Product)
Examples: $2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{MgO}_{(\mathrm{s})}$ $\mathrm{SO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3(a q)}$
2. Deformation or Decomposition
(Compound \rightarrow Many Elements or Single Reactant \rightarrow Many Products)
Examples: $2 \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow 4 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})} \quad \mathrm{H}_{2} \mathrm{CO}_{3(a q)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}$
3. Single Replacement (Element + Compound \rightarrow Element + Compound)

Example: $2 \mathrm{AgNO}_{3(a q)}+\mathrm{Cu}_{(s)} \rightarrow 2 \mathrm{Ag}{ }_{(s)}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(a q)}$
4. Double Replacement (Compound + Compound \rightarrow Compound + Compound)

Example: $\mathrm{AgNO}_{3(a q)}+\mathrm{NaCl}_{(a q)} \rightarrow \mathrm{AgCl}_{(s)}+\mathrm{NaNO}_{3(a q)}$
5. Hydrocarbon Combustion (Hydrocarbon + Oxygen \rightarrow Carbon Dioxide + Water)

Example: $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

Balancing Chemical Equations

Coefficient: - the number in front of the chemical formula that indicates the number of moles, atoms or molecules involve in a chemical reaction.

- the absence of number in front of chemical means the coefficient is 1 .

Example: $2 \mathrm{H}_{2(\mathrm{~g})}+1 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

To Predict Products and Balance Chemical Equations:

1. Write the correct chemical formulas for all products and reactants with proper subscripts. The presence of metals or ionic compounds indicates that we will need to use ions and charges to form any products.
2. For hydrocarbon combustion, balance in the order of C, H, and then O . The product, $\mathrm{H}_{2} \mathrm{O}$, is always in gaseous form unless otherwise stated. (It's usually quite hot in combustion.)
3. For other type of reactions, balance the equation for each type of cations and anions. Do NOT break up the polyatomic ions. Water may be written as $\mathrm{HOH}\left(\mathrm{H}^{+}\right.$and $\left.\mathrm{OH}^{-}\right)$in single and double replacements.
4. Check with the Solubility Table (see Section 4.2) and the Table of Elements for the states of chemicals.

Example 1: Predict the product(s) along with the states, indicate the type of reaction, and balance the following chemical reactions.
a. Sulfur trioxide gas is produced from its elements.

$$
\text { Formation: } \quad \mathrm{S}_{\mathbf{8 (s)}}+\mathbf{1 2}^{\mathrm{O}_{\mathbf{2 (g)}}} \rightarrow \mathbf{8} \mathrm{SO}_{\mathbf{3}(\mathrm{g})}
$$

b. A solid piece of zinc is immersed in an iron (III) chloride solution.

Single Replacement: $\quad 3 \mathbf{Z n}_{(s)}+2 \mathbf{F e C l}_{\mathbf{3}_{(a q)}} \rightarrow \mathbf{3} \mathbf{Z n C l}_{\mathbf{2}(a q)}+2 \mathbf{F e}_{(s)}$

c. Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})\right)$ is burned in a gas barbecue.

Hydrocarbon Combustion:

$$
\mathrm{C}_{3} \mathrm{H}_{8(g)}+5 \mathrm{O}_{2(g)} \rightarrow 3 \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(g)}
$$

d. Chlorine gas is bubbled through a copper (II) iodide solution.

Single Replacement:

$$
\mathrm{Cl}_{2_{(g)}}+\mathrm{CuI}_{2(a q)} \rightarrow \mathrm{CuCl}_{2(a q)}+\mathbf{I}_{2(s)}
$$

e. Ammonia gas is decomposed into its elements.

Decomposition:
$\mathbf{2} \mathbf{N H}_{3(g)} \rightarrow \mathbf{N}_{2(g)}+\mathbf{3} \mathbf{H}_{2(g)}$
f. Sulfuric acid is neutralized by sodium hydroxide solution.

Double Replacement:

$$
\mathrm{H}_{2} \mathrm{SO}_{4(a q)}+2 \mathrm{NaOH}_{(a q)} \rightarrow 2 \mathrm{HOH}_{(a q)}+\mathrm{Na}_{2} \mathrm{SO}_{4(a q)}
$$

g. Propanol $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}_{(I)}\right)$ is accidentally ignited.

Hydrocarbon Combustion:
(Multiply Coefficients by 2)

$$
\left.\begin{array}{rl}
\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}_{(l)} & +9 / 2 \mathrm{O}_{2(g)}
\end{array} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right)
$$

h. Lead (II) nitrate solution is reacted with chromium (III) sulfate solution.

Double Replacement: $\quad 3 \mathbf{~ P b}\left(\mathrm{NO}_{3}\right)_{2(a q)}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3(a q)} \rightarrow \mathbf{2} \mathbf{C r}\left(\mathrm{NO}_{3}\right)_{3(a q)}+3 \mathrm{PbSO}_{4(s)}$

i. Octane $\left(\mathrm{C}_{8} \mathrm{H}_{18(l)}\right)$ is combusted in an automobile.

Hydrocarbon Combustion: $\quad \mathrm{C}_{8} \mathrm{H}_{18(\mathrm{l})}+\mathbf{2 5 / 2} \mathrm{O}_{2(g)} \rightarrow 8 \mathrm{CO}_{2(g)}+9 \mathrm{H}_{2} \mathrm{O}_{(g)}$
(Multiply Coefficients by 2)

$$
2 \mathrm{C}_{8} \mathrm{H}_{18(I)}+25 \mathrm{O}_{2(g)} \rightarrow 16 \mathrm{CO}_{2(g)}+18 \mathrm{H}_{2} \mathrm{O}_{(g)}
$$

Assignment

3.7 pg. 88 \#59, 60

Page 36.

3.8: Amounts of Reactants and Products

Stoichiometry: - the calculation of quantities of chemicals in a chemical reaction.
Stoichiometry Quantities: - when all quantities of the chemical are consumed.
Gravimetric Stoichiometry: - stoichiometry that involves quantities of masses.
Mole Ratio: - the ratio of coefficients between the required chemical and the given chemical.
Example 1: Interpret the chemical equation $4 \mathrm{NH}_{3(g)}+7 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ in terms of
a. moles.
b. molecules.
c. masses.

	$4 \mathrm{NH}_{3(\mathrm{~g})}$	$7 \mathrm{O}_{2(\mathrm{~g})}$	$4 \mathrm{NO}_{2(\mathrm{~g})}$	$6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a.	$\mathbf{4}$ moles of $\mathbf{N H}_{\mathbf{3}}$	$\mathbf{7}$ moles of $\mathbf{O}_{\mathbf{2}}$	4 moles of $\mathbf{N O}_{2}$	$\mathbf{6}$ moles of $\mathbf{H}_{\mathbf{2}} \mathbf{O}$
b.	$\mathbf{4}$ molecules of $\mathbf{N H}_{\mathbf{3}}$	$\mathbf{7}$ molecules of $\mathbf{O}_{\mathbf{2}}$	4 molecules of $\mathbf{N O}_{2}$	$\mathbf{6}$ molecules of $\mathbf{H}_{\mathbf{2}} \mathbf{O}$
c.	$m=n M$ $m=(4 \mathrm{~mol})(17.034 \mathrm{~g} / \mathrm{mol})$ $\boldsymbol{m}=\mathbf{6 8 . 1 3 6} \mathbf{g}$	$m=n M$ $m=(7 \mathrm{~mol})(32.00 \mathrm{~g} / \mathrm{mol})$ $\boldsymbol{m}=\mathbf{2 2 4 . 0} \mathbf{g}$	$m=n M$ $m=(4 \mathrm{~mol})(46.01 \mathrm{~g} / \mathrm{mol})$ $\boldsymbol{m}=\mathbf{1 8 4 . 0} \mathbf{g}$	$m=n M$ $m=(6 \mathrm{~mol})(18.02 \mathrm{~g} / \mathrm{mol})$ $\boldsymbol{m}=\mathbf{1 0 8 . 1} \mathbf{g}$

Gravimetric Stoichiometry Procedure:

1. Predict the products and balance the chemical equation.
2. Put all the information given under the appropriate chemicals and determine the molar masses of the chemical involved.
3. Find the moles of the given chemical. $\left(n=\frac{\boldsymbol{m}}{\boldsymbol{M}}\right)$
4. Find the mole of the required chemical using mole ratio.
$\left(\mathbf{m o l}\right.$ of require $=\mathbf{m o l}$ of given $\left.\times \frac{\text { require coefficient }}{\text { given coefficient }}\right)$
5. Convert mole of the required chemical to its mass equivalence. $(\boldsymbol{m}=\boldsymbol{n} \boldsymbol{M})$

Example 2: 4.35 mol of $\mathrm{PCl}_{5(\mathrm{~g})}$ is decomposed into its elements. Write a balance equation and determined the amount of chlorine produced.

$$
\begin{aligned}
& \begin{array}{llll}
\underset{4.35 \mathrm{~mol}}{\mathbf{4}} \mathrm{PCl}_{5(\mathrm{~g})} & \rightarrow & \mathrm{P}_{4(\mathrm{~s})} & + \\
\frac{\mathbf{1 0} \mathrm{Cl}_{2(g)}}{? \mathrm{~mol}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& n_{\mathrm{Cl}_{2}}=10.9 \mathrm{~mol}
\end{aligned}
$$

Example 3: Determine the mass of carbon dioxide formed when 50.0 kg of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})\right)$ is burned.

$$
\begin{array}{cllcl}
\begin{array}{c}
2 \mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})} \\
50.0 \mathrm{~kg}
\end{array} & +\quad 13 \mathrm{O}_{2(\mathrm{~g})} & \rightarrow & 8 \mathrm{CO}_{2(\mathrm{~g})} & +\mathrm{g} \\
58.12 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

(1) $n_{\mathrm{C}_{4} \mathrm{H}_{10}}=\frac{50.0 \mathrm{~kg}}{58.12 \mathrm{~g} / \mathrm{mol}}=0.8602890571 \mathrm{kmol} \mathrm{C} 4 \mathrm{H}_{10}$
(2) n co $_{2}=0.8602890571 \mathrm{kmol} \mathrm{C}_{4} \mathrm{H}_{10} \times \frac{8 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{mel}_{4} \mathrm{H}_{1 \theta}}=3.441156228 \mathrm{kmol} \mathrm{CO}_{2}$
(3) $\mathrm{m} \mathrm{co}_{2}=n M=\left(3.441156228 \mathrm{kmol} \mathrm{CO}_{2}\right)(44.01 \mathrm{~g} / \mathrm{mol})$
$m \mathrm{CO}_{2}=151 \mathrm{~kg}$
Example 4: Barium chloride solution was mixed with an excess sodium phosphate solution. What was the mass of barium chloride solid needed in the original solution to form 3.21 g of precipitate?

$$
\begin{array}{ccc}
3 \mathrm{BaCl}_{2(a q)}+2 \mathrm{Na}_{3} \mathrm{PO}_{4(a q)} & \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)}+ & 3.21 \mathrm{~g} \\
? \mathrm{~g} & & \\
208.23 \mathrm{~g} / \mathrm{mol} & & \\
& & 601.93 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

(1) $n_{\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}}=\frac{3.21 \mathrm{~g}}{601.93 \mathrm{~g} / \mathrm{mol}}=0.005332846 \mathrm{~mol} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(2) $n_{\mathrm{BaCl}_{2}}=0.005332846 \mathrm{~mol} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{z} \times \frac{3 \mathrm{~mol} \mathrm{BaCl}_{2}}{1 \mathrm{mel} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{z}}=0.015998538 \mathrm{~mol} \mathrm{BaCl}_{2}$
(3) \boldsymbol{m} BaCl $_{2}=n M=\left(0.015998538 \mathrm{~mol} \mathrm{BaCl}_{2}\right)(208.23 \mathrm{~g} / \mathrm{mol})$

3.9: Limiting Reagents

Excess: - the reactant with more than enough amount for the reaction.
Limiting Reagent: - the reactant with the smaller amount (after taken account of the mole ratio) for the reaction.

Note: A limiting reagent question will always have enough information to find the moles of both reactants.
Example 1: A loaf of banana bread recipe calls for 3 eggs, 2 cups of flour, 1 cup of sugar and 3 bananas. How many loaves of banana bread can we make if we have 20 eggs, 11 cups of flour, 7 cups of sugar and 20 bananas? What is the limiting ingredient?

3 Eggs	+	2 Flour	$+$	1 Sugar	$+$	3 Bananas \rightarrow	1 Banana Bread
20 Eggs		11 Flour		7 Sugar		20 Bananas	?
20 Eggs		11 Flour		7 Sugar		20 Bananas	
3 Eggs/loave		2 Flour/loave		1Sugar/loave		3 Bananas/loave	
$=6.67$ loaves		5.5 loave		$=7$ loaves		$=6.67$ loaves	

Steps to deal with Limiting Reagent Problems:

1. Assume one of the reactants is the limiting reagent and determine its mole amount.
2. Determine the mole amount of the other reactant.
3. Use the mole amount of the assumed limiting reagent and the mole ratio; calculate the mole amount of the other reactant actually needed.
4. If the mole amount of the other reactant is smaller than what is needed, then our assumption was wrong. The other reactant is the limiting reagent.
5. If the mole amount of the other reactant is bigger than what is needed, then our assumption was correct. It means that the other reactant is the excess.

Example 2: 5.00 g of phosphorus is reacted with 15.00 g of chlorine gas to produce phosphorus trichloride. Determine the mass of the product produced.

$$
\begin{aligned}
& \mathrm{P}_{4(\mathrm{~s})} \quad+\quad 6 \mathrm{Cl}_{2(\mathrm{~g})} \quad \rightarrow \quad 4 \mathrm{PCl}_{3(\mathrm{~s})} \\
& 5.00 \mathrm{~g} \quad 15.00 \mathrm{~g} \quad ? \mathrm{~g} \\
& M=123.88 \mathrm{~g} / \mathrm{mol} \quad M=70.90 \mathrm{~g} / \mathrm{mol} \quad M=137.32 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Since there is enough information to determine the moles of two reactants, we need to determine which one is the limiting reagent.
(1) $n_{P_{4}}=\frac{m}{M}=\frac{5.00 \mathrm{~g}}{123.88 \mathrm{~g} / \mathrm{mol}}=0.04036 \ldots \mathrm{~mol} \mathrm{P}_{4} \quad$ (2) $n_{\mathrm{Cl}_{2}}=\frac{m}{M}=\frac{15.00 \mathrm{~g}}{70.90 \mathrm{~g} / \mathrm{mol}}=0.2115 \ldots \mathrm{~mol} \mathrm{Cl}_{2}$

Let's assume \mathbf{P}_{4} is the limiting reagent. Calculate the $\mathbf{m o l} \mathbf{C l}_{\mathbf{2}}$ actually needed.
(3) $n_{\mathrm{Cl}_{2}}=0.0403616403 \mathrm{~mol}_{4} \times \frac{6 \mathrm{~mol} \mathrm{Cl}_{2}}{1 \mathrm{~mol}_{4}}=0.2421698418 \mathrm{~mol} \mathrm{Cl}_{2}$ needed

But we don't have 0.2421698418 mol of Cl_{2} we only have 0.2115655853 mol of Cl_{2}. Therefore, Cl_{2} is the limiting reagent. (Note: the limiting reagent is NOT always the chemical with the smaller number of moles. You have to always compare like we did above.)

Now, we calculate the moles of PCl_{3} formed by using moles of limiting reagent $\mathbf{C l}_{2}$.
(4) $n \mathrm{PCl}_{3}=0.2115655853 \mathrm{~mol} \mathrm{Cl}_{2} \times \frac{4 \mathrm{~mol} \mathrm{PCl}_{3}}{6 \mathrm{mel} \mathrm{Cl}_{z}}=0.1410437236 \mathrm{~mol} \mathrm{PCl}_{3}$

Finally, we determine the mass of $\mathrm{PCl}_{\mathbf{3}}$ produced.
(5) m PCl $_{3}=n M=\left(0.1410437236 \mathrm{~mol} \mathrm{PCl}_{3}\right)(137.32 \mathrm{~g} / \mathrm{mol})=19.3664852 \mathrm{~g}$
$m_{\text {PCl }_{3}}=19.4 \mathrm{~g}$

$$
\% \text { Yield }=\frac{\text { Actual }}{\text { Theoretical }} \times 100 \%
$$

3.10: Reaction Yield

Percent Yield: - sometimes call reaction yield

- the proportion of the actual yield to the theoretical yield.

Example 1: If the actual yield of the last example was 18.2 g , what is the percent yield of the reaction?

$$
\quad \begin{aligned}
& \text { 3.8 pg. 89-90 } \# 64 \text { to } 78 \\
& \text { 3.9 pg. } 90 \# 82,84,86 \\
& 3.10 \mathrm{pg} .91 \# 90,92
\end{aligned}
$$

