Honour Chemistry Practice Test: Unit 2 (Part 1): Matter as Solutions and Gases

1 atm = 760 mm Hg = 760 torr = 101.325 kPa $T_K = T_C + 273.15$									
STP = 22.4 L/mol @ 0.00°C & 101.325 kPa (1 atm) SATP = 24.8 L/mol @ 25.0°C & 100. kPa									
$R = 0.0821 \frac{\mathbf{L} \cdot \mathbf{atm}}{\mathbf{K} \cdot \mathbf{mol}} \text{or} 8.314$	$\frac{\mathbf{L} \bullet \mathbf{kPa}}{\mathbf{K} \bullet \mathbf{mol}}$	$D = \frac{m}{V} \qquad n = \frac{m}{M}$	$\frac{n}{d} \qquad C = \frac{n_{solute}}{V_{solution}}$						
$C_1 V_1 = C_2 V_2 \qquad PV = nRT$	$\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2}$	$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$	$\chi_1 = \frac{n_1}{n_{Total}} = \frac{P_1}{P_{Total}}$						
$P_{\text{Total}} = P_1 + P_2 + P_3 + \dots$ $n_{\text{Total}} = n_1 + n_2 + n_3 + \dots$									

Part A: Multiple Choice

(1 point each)

- 1. Which of these compounds is a *strong electrolyte*?
 - C. H_2SO_4 **B.** O₂ E. CH₃COOH **A.** H₂O **D.** $C_6H_{12}O_6$
- Based on the solubility rules, which of these processes will occur if solutions of $CuSO_{4(aa)}$ and $BaCl_{2(aa)}$ 2. are mixed?
 - CuCl₂ will precipitate; Ba^{2+} and SO_4^{2-} are spectator ions. A.
 - CuSO₄ will precipitate; Ba²⁺ and Cl⁻ are spectator ions. BaSO₄ will precipitate; Cu²⁺ and Cl⁻ are spectator ions. B.
 - С.
 - BaCl₂ will precipitate; Cu^{2+} and SO_4^{2-} are spectator ions. D.
 - No precipitate will form. E.
- Which of these choices is the correct *net ionic equation* for the reaction that occurs when solutions of 3. Pb(NO₃)₂ and NH₄Cl are mixed?
 - $Pb(NO_3)_2 (aq) + 2 NH_4Cl (aq) \rightarrow NH_4NO_3 (aq) + PbCl_2 (s)$ Α.
 - B. $Pb^{2+}_{(aq)} + 2Cl^{-}_{(aq)} \rightarrow PbCl_{2(s)}$
 - C. $Pb^{2+}_{(aq)} + 2 NO_{3}^{-}_{(aq)} + 2 NH_{4}^{+}_{(aq)} + 2 Cl^{-}_{(aq)} \rightarrow 2 NH_{4}^{+}_{(aq)} + 2 NO_{3}^{-}_{(aq)} + PbCl_{2(s)}$
 - $NH_4^+(aq) + NO_3^-(aq) \rightarrow 2 NH_4NO_3(s)$ D.
 - E. No reaction occurs when the solutions are mixed.
- A 4.691 g sample of MgCl₂ is dissolved in enough water to give 750. mL of solution. What is the 4. magnesium ion concentration in this solution?
 - 3.70×10^{-2} M **B.** 1.05×10^{-2} M C. 6.57×10^{-2} M A. 4.93×10^{-2} M D. **E.** 0.131 M
- Lithium metal dissolves in water to yield hydrogen gas and aqueous lithium hydroxide. What is the 5. final concentration of hydroxide ions when 5.500 g of lithium metal is dropped into 750. mL of water?
 - A. 1.06 M **B.** 0.528 M **C.** 2.11 M **D.** 0.792 M 0.943 M E.
- Which of the following gas molecules have the *highest average kinetic energy* at 25°C? 6.
 - **D.** Cl₂ A. H₂ **B.** O₂ \mathbf{C} . N₂
 - All the gases have the same average kinetic energy. E.

7.	If 30 oxy	0.0 L of oxygen gen?	are co	ooled fron	n 200°C to	o 1°C	at consta	ant pres	sure, wł	at is the	new v	volume	of
	A.	0.150 L	B.	17.4 L	C.	23.	0 L	D.	51.8 L		Е.	6.00 ×	$10^3 L$
8.	If th does	e pressure of a g s the volume of	gas sa the sa	mple is qu mple chai	uadrupled	and th	ne absolu	ute tem	perature	is double	ed, by	what fa	actor
	А.	8	В.	2	C.	1/2		D.	1⁄4		Е.	1/8	
9.	Two dens	o moles of chlori sity of the gas	ine ga	as at 20.0°	C are heat	ted to	350°C w	while th	e volum	e is kept	const	ant. The	2
	A. D.	increases. Not enough inf	forma	B. tion is give	decreas	ses. rectly	answer t	C.	remain stion.	s the sam	le.		
10.	A m four	nixture of three g and to contain 1.2	ases 7 mo	has a total l CO ₂ , 3.0	l pressure 4 mol CO	of 1,3 , and	80 mmF 1.50 mo	Ig at 29 l Ar. W	98 K. Th That is th	e mixture e partial	e is ar press	nalyzed ure of A	and is
	A. D.	0.258 atm 5,345 mmHg		В. Е.	301 mm 8,020 m	nHg nmHg		C.	356 m	nHg			
11.	Wha sam	at volume of oxy e temperature ar	/gen § nd pre	gas at 320 essure?	K and 68	0 torr 2 N	will read O $_{(g)} + C$	ct comp $D_{2(g)} \rightarrow$	bletely w 2 NO_{2}	rith 2.50 l	Lofl	NO gas	at the
	A.	1.25 L]	B. 2.50 I	Ĺ	C.	3.00 L		D.	1.00 L		Е.	5.00 L
12.	Dev	iations from the	ideal	gas law a	ire greater	at							
	A. C.	low temperatur high temperatu	res an ires ai	d low pre nd high pr	ssures. essures.		B. D.	low te high t	emperatu emperat	res and h ures and	igh p low p	oressure oressure	S. S.
13.	Det sho	ermine the press wn below when	sure o the at	f the gas t tmospheri	rapped in c pressure	the ap is 69	oparatus 5 mmHg	5.	Air				
	A. B. C. D. E.	45 mmHg 650 mmHg 695 mmHg 740 mmHg 760 mmHg						Gas 45	nm L				
14.	1.00 cont Whi	00 atm of oxyger tainer 2.14 times ich of the follow	n gas, s faste ring si	placed in or than doe pecies cou	a contain es 1.000 a ild be the	er hav tm of unkno	ring a pir an unkno wn gas?	nhole oj own ga	pening i s placed	n its side, in this sa	, leak ime a	s from t pparatu	he s.
	А.	Cl ₂	B	SF ₆		C.	Kr		D.	UF ₆		E.	Xe
Part	B: N	Numerical Respo				(1 p	ooint ea	ch)					

- 1. A chemistry student needs 500. mL of 0.350 M of K₂CO₃ solution. The mass of solute required for this solution is ______ g
- 2. It is found that it takes 32.0 mL of a 0.400 mol/L barium hydroxide solution to completely titrate 10.0 mL unknown concentration of hydrochloric acid. Given the <u>unbalanced</u> chemical equation below, the concentration of the acid is _____ mol/L

 $\underline{\qquad} \operatorname{HCl}_{(aq)} + \underline{\qquad} \operatorname{Ba}(\operatorname{OH})_{2 (aq)} \rightarrow \underline{\qquad} \operatorname{HOH}_{(l)} + \underline{\qquad} \operatorname{BaCl}_{2 (aq)}$

- **3.** A 0.500 mol of gas at 25.0°C has a volume of 300. mL. It is in a cylinder with an expandable in a piston. Suppose the pressure of the gas is kept constant while a worker injects another 0.300 mol of the same gas and raise the temperature to 100.°C. The new volume of the gas in this cylinder is ______ mL.
- **4.** A 353 mL soda bottle consists of 4.83 mol/L of CO₂. At 25°C, the partial pressure of CO₂ in air is 29.18 torr at a concentration 0.0681 mol/L. The pressure of CO₂ in the soda bottle is ______ kPa.
- 5. An unknown gas has a density 4.25 g/L at STP, its molar mass is ______ g/mol.

Part C: Extended Response

1. Water vapour is produced from the chemical reaction between hydrogen gas and oxygen gas. Suppose 5.00 L of $H_{2(g)}$ at STP is reacted with 8.50 L of $O_{2(g)}$ at 15.0°C and 793.0 mmHg. Determine the mass of water vapour produced at SATP. (3 points)

Part A: Multiple Choice

1. 11.	C A	2. 12.	C B	3. 13.	B D	4. 14.	C B	5.	А	6.	Е	7.	В	8.	С	9.	С	10.	C
<u>Pari</u>	B: N	Numer	rical I	Respon	nse														
1	<u>24</u>	.2	_	2	<u>2.</u>	<u>56</u>		3.	<u>(</u>	<u>601</u>		4.	<u>2'</u>	<u>76</u>		5.		<u>95.2</u>	
<u>Pari</u>	: C: E	Extend	led R	espon	<u>se</u>														

1. 4.02 g H₂O (g)