Honour Chemistry Practice Test: Unit 2 (Part 1): Matter as Solutions and Gases

$$
\begin{aligned}
& 1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760 \mathrm{torr}=101.325 \mathrm{kPa} \quad T_{K}=T_{C}+273.15 \\
& \text { STP = 22.4 L/mol@ } 0.00^{\circ} \mathrm{C} \& 101.325 \mathrm{kPa}(1 \mathrm{~atm}) \quad \mathrm{SATP}=24.8 \mathrm{~L} / \mathrm{mol} @ 25.0^{\circ} \mathrm{C} \text { \& } \mathbf{1 0 0} . \mathrm{kPa} \\
& R=0.0821 \frac{\mathrm{~L} \bullet \mathrm{~atm}}{\mathrm{~K} \bullet \mathrm{~mol}} \quad \text { or } 8.314 \frac{\mathrm{~L} \bullet \mathrm{kPa}}{\mathrm{~K} \bullet \mathrm{~mol}} \quad D=\frac{m}{V} \quad n=\frac{m}{M} \quad C=\frac{n_{\text {solute }}}{V_{\text {solution }}} \\
& C_{1} V_{1}=C_{2} V_{2} \quad P V=n R T \quad \frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}} \quad \frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}} \quad \chi_{1}=\frac{n_{1}}{n_{\text {Total }}}=\frac{P_{1}}{P_{\text {Total }}} \\
& P_{\text {Total }}=P_{1}+P_{2}+P_{3}+\ldots \quad n_{\text {Total }}=n_{1}+n_{2}+n_{3}+\ldots
\end{aligned}
$$

Part A: Multiple Choice

(1 point each)

1. Which of these compounds is a strong electrolyte?
A. $\mathrm{H}_{2} \mathrm{O}$
B. O_{2}
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
E. $\mathrm{CH}_{3} \mathrm{COOH}$
2. Based on the solubility rules, which of these processes will occur if solutions of $\mathrm{CuSO}_{4(a q)}$ and $\mathrm{BaCl}_{2(a q)}$ are mixed?
A. CuCl_{2} will precipitate; Ba^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ are spectator ions.
B. CuSO_{4} will precipitate; Ba^{2+} and Cl^{-}are spectator ions.
C. BaSO_{4} will precipitate; Cu^{2+} and Cl^{-}are spectator ions.
D. BaCl_{2} will precipitate; Cu^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ are spectator ions.
E. No precipitate will form.
3. Which of these choices is the correct net ionic equation for the reaction that occurs when solutions of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{NH}_{4} \mathrm{Cl}$ are mixed?
A. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)}+2 \mathrm{NH}_{4} \mathrm{Cl}_{(a q)} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3(a q)}+\mathrm{PbCl}_{2(s)}$
B. $\mathrm{Pb}^{2+}{ }_{(a q)}+2 \mathrm{Cl}^{-}{ }_{(a q)} \rightarrow \mathrm{PbCl}_{2(s)}$
C. $\mathrm{Pb}^{2+}{ }_{(a q)}+2 \mathrm{NO}_{3}^{-}{ }_{(a q)}+2 \mathrm{NH}_{4}^{+}{ }_{(a q)}+2 \mathrm{Cl}_{(a q)}^{-} \rightarrow 2 \mathrm{NH}_{4}^{+}{ }_{(a q)}+2 \mathrm{NO}_{3}^{-}{ }_{(a q)}+\mathrm{PbCl}_{2(s)}$
D. $\mathrm{NH}_{4}^{+}{ }_{(a q)}+\mathrm{NO}_{3}{ }_{(a q)} \rightarrow 2 \mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})}$
E. No reaction occurs when the solutions are mixed.
4. A 4.691 g sample of MgCl_{2} is dissolved in enough water to give $750 . \mathrm{mL}$ of solution. What is the magnesium ion concentration in this solution?
A. $\quad 3.70 \times 10^{-2} \mathrm{M}$
B. $1.05 \times 10^{-2} \mathrm{M}$
C. $6.57 \times 10^{-2} \mathrm{M}$
D. $\quad 4.93 \times 10^{-2} \mathrm{M}$
E. 0.131 M
5. Lithium metal dissolves in water to yield hydrogen gas and aqueous lithium hydroxide. What is the final concentration of hydroxide ions when 5.500 g of lithium metal is dropped into 750 mL of water?
A. $\quad 1.06 \mathrm{M}$
B. $\quad 0.528 \mathrm{M}$
C. 2.11 M
D. $\quad 0.792 \mathrm{M}$
E. $\quad 0.943 \mathrm{M}$
6. Which of the following gas molecules have the highest average kinetic energy at $25^{\circ} \mathrm{C}$?
A. H_{2}
B. O_{2}
C. N_{2}
D. Cl_{2}
E. All the gases have the same average kinetic energy.
7. If 30.0 L of oxygen are cooled from $200^{\circ} \mathrm{C}$ to $1^{\circ} \mathrm{C}$ at constant pressure, what is the new volume of oxygen?
A. $\quad 0.150 \mathrm{~L}$
B. $\quad 17.4 \mathrm{~L}$
C. $\quad 23.0 \mathrm{~L}$
D. $\quad 51.8 \mathrm{~L}$
E. $\quad 6.00 \times 10^{3} \mathrm{~L}$
8. If the pressure of a gas sample is quadrupled and the absolute temperature is doubled, by what factor does the volume of the sample change?
A. 8
B. 2
C. $1 / 2$
D. $1 / 4$
E. $1 / 8$
9. Two moles of chlorine gas at $20.0^{\circ} \mathrm{C}$ are heated to $350^{\circ} \mathrm{C}$ while the volume is kept constant. The density of the gas
A. increases.
B. decreases.
C. remains the same.
D. Not enough information is given to correctly answer the question.
10. A mixture of three gases has a total pressure of $1,380 \mathrm{mmHg}$ at 298 K . The mixture is analyzed and is found to contain $1.27 \mathrm{~mol} \mathrm{CO}_{2}, 3.04 \mathrm{~mol} \mathrm{CO}$, and 1.50 mol Ar . What is the partial pressure of Ar?
A. $\quad 0.258 \mathrm{~atm}$
B. $\quad 301 \mathrm{mmHg}$
C. 356 mmHg
D. $5,345 \mathrm{mmHg}$
E. $8,020 \mathrm{mmHg}$
11. What volume of oxygen gas at 320 K and 680 torr will react completely with 2.50 L of NO gas at the same temperature and pressure? $\quad 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$
A. $\quad 1.25 \mathrm{~L}$
B. 2.50 L
C. $\quad 3.00 \mathrm{~L}$
D. $\quad 1.00 \mathrm{~L}$
E. $\quad 5.00 \mathrm{~L}$
12. Deviations from the ideal gas law are greater at
A. low temperatures and low pressures.
B. low temperatures and high pressures.
C. high temperatures and high pressures.
D. high temperatures and low pressures.
13. Determine the pressure of the gas trapped in the apparatus shown below when the atmospheric pressure is 695 mmHg .
A. 45 mmHg
B. 650 mmHg
C. $\quad 695 \mathrm{mmHg}$
D. 740 mmHg
E. $\quad 760 \mathrm{mmHg}$

14. 1.000 atm of oxygen gas, placed in a container having a pinhole opening in its side, leaks from the container 2.14 times faster than does 1.000 atm of an unknown gas placed in this same apparatus. Which of the following species could be the unknown gas?
A. Cl_{2}
B. SF_{6}
C. Kr
D. $\quad \mathrm{UF}_{6}$
E. Xe

Part B: Numerical Response

(1 point each)

1. A chemistry student needs 500 . mL of 0.350 M of $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution. The mass of solute required for this solution is \qquad g
2. It is found that it takes 32.0 mL of a $0.400 \mathrm{~mol} / \mathrm{L}$ barium hydroxide solution to completely titrate 10.0 mL unknown concentration of hydrochloric acid. Given the unbalanced chemical equation below, the concentration of the acid is \qquad $\mathrm{mol} / \mathrm{L}$

$$
\ldots \mathrm{HCl}_{(a q)}+\ldots \mathrm{Ba}(\mathrm{OH})_{2(a q)} \rightarrow _\mathrm{HOH}_{(I)}+\ldots \mathrm{BaCl}_{2(a q)}
$$

3. A 0.500 mol of gas at $25.0^{\circ} \mathrm{C}$ has a volume of 300 . mL . It is in a cylinder with an expandable in a piston. Suppose the pressure of the gas is kept constant while a worker injects another 0.300 mol of the same gas and raise the temperature to $100 .{ }^{\circ} \mathrm{C}$. The new volume of the gas in this cylinder is \qquad mL .
4. A 353 mL soda bottle consists of $4.83 \mathrm{~mol} / \mathrm{L}$ of CO_{2}. At $25^{\circ} \mathrm{C}$, the partial pressure of CO_{2} in air is 29.18 torr at a concentration $0.0681 \mathrm{~mol} / \mathrm{L}$. The pressure of CO_{2} in the soda bottle is \qquad kPa .
5. An unknown gas has a density $4.25 \mathrm{~g} / \mathrm{L}$ at STP, its molar mass is \qquad $\mathrm{g} / \mathrm{mol}$.

Part C: Extended Response

1. Water vapour is produced from the chemical reaction between hydrogen gas and oxygen gas. Suppose $5.00 \mathrm{~L}^{\text {of }} \mathrm{H}_{2(\mathrm{~g})}$ at STP is reacted with 8.50 L of $\mathrm{O}_{2(\mathrm{~g})}$ at $15.0^{\circ} \mathrm{C}$ and 793.0 mmHg . Determine the mass of water vapour produced at SATP.
(3 points)

Part A: Multiple Choice

1. C
2. C
3. B
4. C
5. A
6. E
7. B
8. C
9. C
10. C
11. A
12. B
13. D
14. B

Part B: Numerical Response

1. $\quad 24.2$
2. \qquad
3. \qquad
4. \qquad 5.
95.2

Part C: Extended Response

1. $4.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
