$$
\begin{aligned}
& \% \text { by Mass }=\frac{m_{\text {solute }}}{\boldsymbol{m}_{\text {solution }}} \times \mathbf{1 0 0 \%} \quad \%(\mathrm{v} / \mathrm{v})=\frac{V_{\text {solute }}}{V_{\text {solution }}} \times \mathbf{1 0 0 \%} \quad \%(\mathrm{~m} / \mathrm{v})=\frac{\boldsymbol{m}_{\text {solute }} \text { in } \mathrm{g}}{V_{\text {solution }} \text { in } \mathrm{mL}} \times \mathbf{1 0 0 \%} \\
& C=\frac{n_{\text {solute }}}{V_{\text {solution }}} \quad \text { Molality }=\frac{n_{\text {solute }}}{\boldsymbol{m}_{\text {solvent }} \text { in } \mathrm{kg}} \quad \mathbf{p p m}=\frac{\boldsymbol{m}_{\text {solute }}(\mathbf{m g})}{V_{\text {solution }}(\mathrm{L})} \quad \mathbf{p p b}=\frac{\boldsymbol{m}_{\text {solute }}(\mu \mathrm{g})}{V_{\text {solution }}(\mathrm{L})} \\
& C=k P \quad i=\frac{n_{\text {ions }}}{n_{\text {solute }}} \quad \Delta T_{b}=i K_{b} \times \text { Molality }_{\text {solute }} \quad \Delta T_{f}=i K_{f} \times \text { Molality }_{\text {solute }}
\end{aligned}
$$

Part A: Multiple Choice

1. Which of the following would be expected to have the lowest vapour pressure at room temperature?
A. ethanol, $\mathrm{bp}=78^{\circ} \mathrm{C}$
B. methanol, $\mathrm{bp}=65^{\circ} \mathrm{C}$
C. water, $\mathrm{bp}=100^{\circ} \mathrm{C}$
D. acetone, $\mathrm{bp}=56^{\circ} \mathrm{C}$
2. Which property of water allows a razor blade to float on it without sinking?
A. viscosity
B. surface tension
C. density
D. specific heat
E. triple point
3. A liquid boils when its
A. vapour pressure is exactly 1 atmosphere.
B. vapour pressure is equal to, or greater than, the external pressure pushing on it.
C. temperature is equal to 273 K (standard temperature).
D. temperature is greater than room temperature.
4. Use the graph of vapour pressure to determine the normal boiling point of trichloromethane, CHCl_{3}.
A. $\quad 19^{\circ} \mathrm{C}$
B. $52^{\circ} \mathrm{C}$
C. $60^{\circ} \mathrm{C}$
D. $64^{\circ} \mathrm{C}$
E. $70^{\circ} \mathrm{C}$

5. What is the molarity of a solution that is 26.0% by mass phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ and that has a density of $1.155 \mathrm{~g} / \mathrm{mL}$?
A. $\quad 2.30 \times 10^{-3} \mathrm{M}$
B. $\quad 0.30 \mathrm{M}$
C. $\quad 2.30 \mathrm{M}$
D. $\quad 3.06 \mathrm{M}$
E. 300 M
6. Calculate the percent by mass of potassium nitrate in a solution made from $45.0 \mathrm{~g} \mathrm{KNO}_{3}$ and 295 mL of water. The density of water is $0.997 \mathrm{~g} / \mathrm{mL}$.
A. 1.51%
B. 7.57%
C. 13.3%
D. 15.2%
E. none of these
7. Calculate the molality of a solution containing 14.3 g of NaCl in 42.2 g of water.
A. $\quad 2.45 \times 10^{-4} \mathrm{~m}$
B. $\quad 5.80 \times 10^{-4} \mathrm{~m}$
C. $2.45 \times 10^{-1} \mathrm{~m}$
D. 103 m
E. $\quad 5.80 \mathrm{~m}$
8. Which of the following aqueous solutions has the highest boiling point? (K_{b} for water is $0.52^{\circ} \mathrm{C} / \mathrm{m}$)
A. 0.2 m KCl
B. $\quad 0.2 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$
C. $0.2 \mathrm{~m} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
D. 0.2 m KCl and $0.2 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$
E. $0.2 \mathrm{~m} \mathrm{Na} \mathrm{Na}_{2} \mathrm{SO}_{4}$ and $0.2 \mathrm{~m} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
9. Calculate the freezing point of a solution made from 21.0 g NaCl and 100 . g of $\mathrm{H}_{2} \mathrm{O} .\left(K_{f} \mathrm{H}_{2} \mathrm{O}=1.86^{\circ} \mathrm{C} / \mathrm{m}\right)$
A. $3.59^{\circ} \mathrm{C}$
B. $6.68^{\circ} \mathrm{C}$
C. $-13.4^{\circ} \mathrm{C}$
D. $-6.68^{\circ} \mathrm{C}$
E. $-3.59^{\circ} \mathrm{C}$

Use the graph to answer the next question.

10. The substance shown on the graph that is most soluble at $0^{\circ} \mathrm{C}$ is
A. KNO_{3}
B. NaCl
C. NaNO_{3}
D. KClO_{3}
11. A student prepared a list of solutes.
I. $\mathrm{CaCl}_{2(s)}$
II. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{~s})}$
III. $\mathrm{H}_{2} \mathrm{SO}_{4(\text { (I) }}$
IV. $\mathrm{NaNO}_{3(\mathrm{~s})}$

If the student prepared equal volumes of $0.10 \mathrm{~mol} / \mathrm{L}$ solutions of each substance, which solute would produce the highest concentration of dissolved ions?
A. III
B. IV
C. I
D. II
12. The label on a 750 mL bottle of wine indicated that the alcohol content was 82.5 mL . The concentration, expressed in percent by volume, is
A. 8.25%
B. 11.0%
C. 12.0%
D. 11.5%
13. The concentration of glucose in blood plasma is 0.090%. This means that the mass of glucose in 100. mL of blood is
A. 0.90 mg
B. 0.090 mg
C. $90 . \mathrm{mg}$
D. 9.0 mg
14. Which factor does not affect the solubility of a solid electrolyte in a liquid solvent?
A. temperature
B. nature of the solvent
C. pressure
D. nature of the solute
15. Which of the following factors is important only for the solubility of gases in solvents?
A. the nature of the solute.
B. the nature of the solvent.
C. the pressure of the gas.
D. the temperature.
E. the atmospheric pressure.
16. If the amount of solute present in a solution at a given temperature is less than the maximum amount that can dissolve at that temperature, the solution is said to be
A. saturated
B. unsaturated
C. supersaturated
D. concentrated
17. What is the molality of a solution that contains $516 \mathrm{~g} \mathrm{KNO}_{3}$ in 4.47 L water?
A. 0.315 m
B. 0.779 m
C. 1.02 m
D. 1.14 m
18. A solution of sugar in water has a density of $1.05 \mathrm{~g} / \mathrm{cm}^{3}$. If you have 75.0 mL of the solution, and if the solution is 8.10% sugar by mass, how many grams of sugar are there in the solution?
A. 63.8 g
B. 6.38 g
C. 60.8 g
D. 6.08 g
19. What is the boiling point change for a solution containing 0.328 moles of naphthalene (a nonvolatile, non-ionizing compound) in 250 . g of liquid benzene? ($K_{b}=2.53^{\circ} \mathrm{C} / \mathrm{m}$ for benzene)
A. $3.32^{\circ} \mathrm{C}$
B. $1.93^{\circ} \mathrm{C}$
C. $7.41^{\circ} \mathrm{C}$
D. $4.31^{\circ} \mathrm{C}$
20. Which of the following aqueous solutions has the highest boiling point?
A. $1.0 \mathrm{~m} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
B. $1.0 \mathrm{~m} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
C. $1.0 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$
D. 1.0 m KCH 33 COO
21. Compared with a 0.01 m sugar solution, a $0.01 \mathrm{~m} \mathrm{MgCl}{ }_{2}$ solution has
A. the same boiling-point elevation.
B. about twice the boiling-point elevation.
C. about three times the boiling-point elevation.
D. about four times the boiling-point elevation.
22. When a 20.0 g sample of an unknown compound is dissolved in 500 g of benzene (a nonelectrolytic, non-ionizing compound), the freezing point of the resulting solution of $3.77^{\circ} \mathrm{C}$. The freezing point of pure benzene is $5.48^{\circ} \mathrm{C}$ and K_{f} for benzene is $5.12^{\circ} \mathrm{C} / \mathrm{m}$. Calculate the molar mass of the unknown compound
A. $120 . \mathrm{g} / \mathrm{mol}$
B. $140 . \mathrm{g} / \mathrm{mol}$
C. $100 . \mathrm{g} / \mathrm{mol}$
D. $80.0 \mathrm{~g} / \mathrm{mol}$
23. The attractive forces in a liquid are
A. strong enough to prevent the particles from changing positions.
B. too weak to hold the particles in fixed positions.
C. more effective than those in a solid.
D. nonexistence so particles will always repel each other.

Part B: Numerical Response

1. A hydrogen peroxide solution is made from adding 56.0 mL of pure $\mathrm{H}_{2} \mathrm{O}_{2(I)}$ into 422 mL of water. It's $\%(\mathrm{v} / \mathrm{v})$ solution is \qquad $\%$.
2. $\quad 35.0 \mathrm{~mL}$ of 0.255 M nitric acid is added to 45.0 mL of $0.328 \mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$. The concentration of nitrate ion in the final solution is \qquad M.

Part C: Extended Response

1. Determine the mass of glucose needed to raise the boiling point of 3.00 L water to $102.0^{\circ} \mathrm{C}$ assuming water has a density of $1.00 \mathrm{~g} / \mathrm{mL}$. $\left(K_{b}\right.$ of water $\left.=0.510^{\circ} \mathrm{C} \bullet \mathrm{kg} / \mathrm{mol}\right)$
2. A substance that has a triple point at $-15^{\circ} \mathrm{C}$ and 0.30 atm , melts at $-10.0^{\circ} \mathrm{C}$ at 1.0 atm , and has a normal boiling point of $90^{\circ} \mathrm{C}$.
a. Sketch the phase diagram for this substance.
b. Based on the phase diagram in part a., below what pressure and temperature would the substance undergo sublimation? Explain your reasoning.

Part A: Multiple Choice

1. C
2. B
3. B
4. D
5. D
6. C
7. E
8. E
9. C
10. C
11. D 12. B 13. C
12. C
13. C
14. B
15. D
16. B
17. A
18. B
19. C
20. A
21. B

Part B: Numerical Response

1. \qquad
11.7
2. $\quad 0.481$

Part C: Extended Response

1. $\quad 2.12 \mathrm{~kg}$ of glucose

2a.

2b. Base on the diagram, the solid-gas line is below the triple point. Hence, sublimation would only happen below $-15^{\circ} \mathrm{C}$ and below 0.30 atm .

