Honour Chemistry Practice Test: Unit 2 (Part 2): Matter as Solutions and Gases

% by Mass =
$$\frac{m_{solute}}{m_{solution}} \times 100\%$$
 % (v/v) = $\frac{V_{solute}}{V_{solution}} \times 100\%$ % (m/v) = $\frac{m_{solute}}{V_{solution}} \frac{\ln g}{\ln mL} \times 100\%$
$$C = \frac{n_{solute}}{V_{solution}}$$
 Molality = $\frac{n_{solute}}{m_{solvent}} \frac{\ln g}{\ln kg}$ ppm = $\frac{m_{solute}}{V_{solution}} \frac{\ln g}{V_{solution}}$ ppb = $\frac{m_{solute}}{V_{solution}} \frac{\ln g}{V_{solution}}$

$$C = \frac{n_{solute}}{V_{solution}} \qquad \text{Molality} = \frac{n_{solute}}{m_{solvent} \text{ in kg}} \qquad \text{ppm} = \frac{m_{solute} \text{ (mg)}}{V_{solution} \text{ (L)}} \qquad \text{ppb} = \frac{m_{solute} \text{ (\mug)}}{V_{solution} \text{ (L)}}$$

$$C = kP$$
 $i = \frac{n_{ions}}{n_{colute}}$ $\Delta T_b = iK_b \times \text{Molality}_{\text{solute}}$ $\Delta T_f = iK_f \times \text{Molality}_{\text{solute}}$

Part A: Multiple Choice

(1 point each)

Which of the following would be expected to have the *lowest* vapour pressure at room temperature? 1.

ethanol, bp = 78° C

methanol, bp = 65° C

C. water, bp = 100° C

acetone, bp = 56° C D.

Which property of water allows a razor blade to float on it without sinking? 2.

A. viscosity

surface tension В.

C. density

D. specific heat

Ε. triple point

A liquid boils when its 3.

vapour pressure is exactly 1 atmosphere.

В. vapour pressure is equal to, or greater than, the external pressure pushing on it.

temperature is equal to 273 K (standard temperature). C.

temperature is greater than room temperature.

4. Use the graph of vapour pressure to determine the normal boiling point of trichloromethane, CHCl₃.

What is the molarity of a solution that is 26.0% by mass phosphoric acid (H₃PO₄) and that has a density 5. of 1.155 g/mL?

- **A.** $2.30 \times 10^{-3} \text{ M}$
- **B.** 0.30 M
- C. 2.30 M
- **D.** 3.06 M

E. 300 M

Calculate the percent by mass of potassium nitrate in a solution made from 45.0 g KNO₃ and 295 mL of water. The density of water is 0.997 g/mL.

- 1.51 %
- **B.** 7.57 %
- **C.** 13.3 %
- **D.** 15.2 %

Ε. none of these

Calculate the molality of a solution containing 14.3 g of NaCl in 42.2 g of water. 7.

- **A.** $2.45 \times 10^{-4} m$
- **B.** $5.80 \times 10^{-4} m$ **C.** $2.45 \times 10^{-1} m$ **D.** 103 m

Which of the following aqueous solutions has the highest boiling point? (K_b for water is 0.52° C/m) 8.

0.2 m KCl

- **B.** $0.2 \, m \, \text{Na}_2 \text{SO}_4$
- **C.** $0.2 m \text{ Ca(NO}_3)_2$

- 0.2 m KCl and 0.2 m Na₂SO₄
- **E.** $0.2 m \text{ Na}_2 \text{SO}_4 \text{ and } 0.2 m \text{ Ca}(\text{NO}_3)_2$

- 9. Calculate the freezing point of a solution made from 21.0 g NaCl and 100. g of H₂O. $(K_f H_2 O = 1.86^{\circ} C/m)$
 - **A.** 3.59°C
- **B.** 6.68°C
- **C.** −13.4°C
- **D.** −6.68°C
- **E.** -3.59°C

Use the graph to answer the next question.

- 10. The substance shown on the graph that is most soluble at 0°C is
 - **A.** KNO_3
- **B.** NaCl

C. NaNO₃

D. KClO₃

- **11.** A student prepared a list of solutes.
 - I. $CaCl_{2(s)}$
- **II.** $Al_2(SO_4)_{3(s)}$
- III. $H_2SO_{4(l)}$
- IV. NaNO_{3 (s)}

If the student prepared equal volumes of 0.10 mol/L solutions of each substance, which solute would produce the highest concentration of dissolved ions?

- A. III
- B. IV

C. I

- D. II
- **12.** The label on a 750. mL bottle of wine indicated that the alcohol content was 82.5 mL. The concentration, expressed in percent by volume, is
 - **A.** 8.25%
- **B.** 11.0%

C. 12.0%

- **D.** 11.5%
- 13. The concentration of glucose in blood plasma is 0.090%. This means that the mass of glucose in 100, mL of blood is
 - **A.** 0.90 mg
- **B.** 0.090 mg
- **C.** 90. mg

- **D.** 9.0 mg
- **14.** Which factor does not affect the solubility of a solid electrolyte in a liquid solvent?
 - **A.** temperature
- **B.** nature of the solvent
- **C.** pressure
- **D.** nature of the solute
- **15.** Which of the following factors is important <u>only</u> for the solubility of gases in solvents?
 - **A.** the nature of the solute.
- **B.** the nature of the solvent.
- **C.** the pressure of the gas.

D. the temperature.

- **E.** the atmospheric pressure.
- If the amount of solute present in a solution at a given temperature is less than the maximum amount that can dissolve at that temperature, the solution is said to be
- **A.** saturated

16.

- **B.** unsaturated
- **C.** supersaturated
- **D.** concentrated

17.	What is the molality of a solution that contains 516 g KNO ₃ in 4.47 L water?			
	A. 0.315 <i>m</i>	B. 0.779 <i>m</i>	C. 1.02 <i>m</i>	D. 1.14 <i>m</i>
18.	A solution of sugar in water has a density of 1.05 g/cm ³ . If you have 75.0 mL of the solution, and if the solution is 8.10% sugar by mass, how many grams of sugar are there in the solution?			
	A. 63.8 g	B. 6.38 g	C. 60.8 g	D. 6.08 g
19.	What is the boiling point change for a solution containing 0.328 moles of naphthalene (a nonvolatile, non-ionizing compound) in 250. g of liquid benzene? ($K_b = 2.53$ °C/ m for benzene)			
	A. 3.32°C	B. 1.93°C	C. 7.41°C	D. 4.31°C
20.	Which of the following aqueous solutions has the highest boiling point?			
	A. $1.0 m C_6 H_{12} O_6$	B. $1.0 m \text{ Al(NO}_3)_3$	C. $1.0 \ m \ \text{Na}_2 \text{SO}_4$	D. 1.0 <i>m</i> KCH ₃ COO
21.	Compared with a 0.01 m sugar solution, a 0.01 m MgCl ₂ solution has			
	 A. the same boiling-point elevation. C. about three times the boiling-point elevation. D. about twice the boiling-point below to be about twice the boiling-point below to			
22.	When a 20.0 g sample of an unknown compound is dissolved in 500. g of benzene (a non-electrolytic, non-ionizing compound), the freezing point of the resulting solution of 3.77°C. The freezing point of pure benzene is 5.48 °C and K_f for benzene is 5.12 °C/ m . Calculate the molar mass of the unknown compound			
	A. 120. g/mol	B. 140. g/mol	C. 100. g/mol	D. 80.0 g/mol
23.	The attractive forces	s in a liquid are		
	B. too weak to holdC. more effective the	p prevent the particles from chall the particles in fixed position nan those in a solid. particles will always repel each	S.	
Part 1	3: Numerical Respon	se		(1 point each)
1.		e solution is made from adding is%.	g 56.0 mL of pure H ₂	O _{2 (l)} into 422 mL of water.
2.	35.0 mL of $0.255 M$ nitric acid is added to $45.0 mL$ of $0.328 M$ Mg(NO ₃) ₂ . The concentration of nitrate ion in the final solution is M.			
Part (C: Extended Response	2		
1.	Determine the mass of glucose needed to raise the boiling point of 3.00 L water to 102.0°C assuming water has a density of 1.00 g/mL. (K_b of water = 0.510°C • kg/mol) (3 points)			
2.	A substance that has a triple point at -15°C and 0.30 atm, melts at -10.0°C at 1.0 atm, and has a normal boiling point of 90°C. (4 points)			
	a. Sketch the phase diagram for this substance.			
	-	ase diagram in part a., below vation? Explain your reasoning.	-	perature would the substance

Part A: Multiple Choice

C 2. В 3. D 6. C E C **10.** C 1. В 4. 5. D 7. 8. Е 9. **14.** C 11. D **12.** В 13. C **15.** C **16.** B **17.** D **18.** В **19.** A **20.** B

21. C **22.** A **23.** B

Part B: Numerical Response

1. <u>11.7</u> 2. <u>0.481</u>

Part C: Extended Response

1. 2.12 kg of glucose

2a.

2b. Base on the diagram, the solid-gas line is below the triple point. Hence, sublimation would only happen below -15° C and below 0.30 atm.