Honour Chemistry: Unit 5 Practice Test: Chemical Kinetics and Equilibrium

Name:	Da	_ Block:		
	$K_P = K_c (RT)^{\Delta n}$	$R = 0.08206 \text{ K}^{-1}$	Total: 30 marks	
Part A: Multiple Choice			(1 mark each)	
1 Which of the following wi	Il shift to the repotent(s)	as a result of a degrapse in	volumo?	

1. Which of the following will shift to the reactant(s) as a result of a decrease in volume?

A.
$$H_{2(g)} + Cl_{2(g)} \rightleftharpoons 2 HCl_{(g)}$$
B. $N_{2(g)} + 3 H_{2(g)} \rightleftharpoons 2 NH_{3(g)}$ **C.** $4 Fe_{(s)} + 3 O_{2(g)} \rightleftharpoons 2 Fe_2O_{3(s)}$ **D.** $2 SO_{3(g)} \rightleftharpoons 2 SO_{2(g)} + O_{2(g)}$

- 2. Which statement is true for the reaction, $2 \text{ CO}_{(g)} + \text{O}_{2(g)} \approx 2 \text{ CO}_{2(g)}$, if its equilibrium constant equals 1.6×10^6 ?
 - A. It essentially goes to completion at equilibrium.C. The products will not form.
- **B.** It goes only in one direction.
- **D.** It takes place very rapidly.
- 3. One of the byproducts of the cracking process used in petroleum refineries is ethyne $(C_2H_{2(g)})$. In the presence of palladium catalyst, the ethyne forms ethene and ethane. This reaction is represented by the **unbalanced** equation

$$C_2H_{2(g)} + H_{2(g)} \rightarrow C_2H_{4(g)} + C_2H_{6(g)} + energy$$

The energy diagram that represents both the catalyzed (-----) and uncatalyzed reactions (-----) is

4. When phosphorus, $P_{4(s)}$, is exposed to air, it ignites spontaneously and rapidly releases 2 940 kJ/mol. Which of the following potential energy diagrams best represents this reaction?

The equilibrium expression for an industrial method of producing ethanol is

$$K = \frac{\left[C_2H_5OH_{(g)}\right]}{\left[C_2H_{4(g)}\right]\left[H_2O_{(g)}\right]}$$

Under certain conditions, K = 300.0. At equilibrium, a 5000 L reaction vessel contains 115 mol of C₂H_{4 (g)} and 110 mol of H₂O (g).

5. Under these conditions, the equilibrium concentration of $C_2H_5OH_{(g)}$ is

A. 1.60×10^{-6} mol/L **B.** 0.152 mol/L **C.** 75.0 mol/L **D.** 5.92×10^{5} mol/L

Coal and natural gas contain trace amounts of sulfur compounds, which when burned, may lead to acid rain pollution.

Reactions Related to Acid Rain

 $I = 2 H_2 S_{(g)} + 3 O_{2(g)} \approx 2 H_2 O_{(g)} + 2 SO_{2(g)}$ $II = 2 SO_{2(g)} + O_{2(g)} \approx 2 SO_{3(g)}$ $III = SO_{2(g)} + 2 H_2 O_{(l)} \approx 2 H_2 SO_{3(aq)}$ $IV = 2 SO_{3(g)} + 2 H_2 O_{(l)} \approx 2 H_2 SO_{4(aq)}$

6. The equilibrium expression for reaction I is

A.
$$K = \frac{[H_2O_{(g)}]^2 + [SO_{2(g)}]^2}{[H_2S_{(g)}]^2 + [O_{2(g)}]^3}$$

B. $K = \frac{[H_2S_{(g)}]^2 + [O_{2(g)}]^3}{[H_2O_{(g)}]^2 + [SO_{2(g)}]^2}$
C. $K = \frac{[H_2S_{(g)}]^2 [O_{2(g)}]^3}{[H_2O_{(g)}]^2 [SO_{2(g)}]^2}$
D. $K = \frac{[H_2O_{(g)}]^2 [SO_{2(g)}]^2}{[H_2S_{(g)}]^2 [O_{2(g)}]^3}$

- 7. At 900 K, the equilibrium constant for reaction II is 13.0. The equilibrium concentrations are $[SO_{2(g)}] = 0.361 \text{ mol/L}$ and $[SO_{3(g)}] = 0.840 \text{ mol/L}$. Given this information, the calculated equilibrium concentration for $O_{2(g)}$ is
 - A. 0.179 mol/L
 B. 0.416 mol/L
 C. 2.40 mol/L
 D. 5.59 mol/L

Use the following information to answer the next question.

Some of the SO_{2 (g)} produced from the burning of coal and natural gas can react with NO_{2 (g)} in the atmosphere according to the equation

 $SO_{2(g)} + NO_{2(g)} \Rightarrow NO_{(g)} + SO_{3(g)}$ $\Delta H = -41.9 \text{ kJ}$

- 8. The equilibrium concentration of $SO_{3(g)}$ in the reaction could be increase by
 - **A.** raising the temperature **B.** adding a catalyst **C.** adding NO_{2(g)} **D.** removing SO_{2(g)}

Use the following information to answer the next two questions.

Carbon Monoxide is commonly produced by passing hydrogen gas through carbon dioxide.

 $CO_{\bullet} \land \land + H_{\bullet} \land \land \Rightarrow H_{\bullet}O \land \land + CO \land \land$

- 9. Which two stresses will each cause the equilibrium to shift to the reactants?
 - **A.** increase [H₂] and increase [CO]
- **B.** decrease $[H_2]$ and increase $[H_2O]$
- **C.** increase [CO₂] and decrease [CO]
- **D.** decrease $[CO_2]$ and decrease $[H_2O]$

10. Which of the following graphs represents the forward reaction when $H_2O_{(g)}$ is added to the above equilibrium at time = t_1 ?

11. The equilibrium system 2 NH_{3 (g)} \Rightarrow N_{2 (g)} + 3 H_{2 (g)}. Initially, some NH₃ is placed into a 1.0 L container. At equilibrium, there is 0.030 mol N₂ present. What is the concentration of H₂ at equilibrium?

A. 0.010 mol/L	B. 0.030 mol/L	C. 0.060 mol/L	D. 0.090 mol/L
12. Which reaction has the	equilibrium expression,	$K = \frac{[H_2O]^6[NO_2]^4}{[NH_3]^4[O_2]^7}?$	
A. $4 \text{ NH}_{3(g)} + 7 \text{ O}_{2(g)} =$ C. $4 \text{ NO}_{3(g)} + 6 \text{ H}_2 \text{ O}_{(l)}$	(0)	B. $4 \text{ NH}_{3(g)} + 7 \text{ O}_{2(g)} =$ D. $4 \text{ NO}_{3(g)} + 6 \text{ H}_2\text{O}_{(l)}$	

Part B: Written Response

1. The equilibrium system, $CH_{4(g)} + H_2O_{(g)} \approx CO_{(g)} + 3 H_{2(g)}$, initially has 0.060 mol CH₄, 0.080 mol H₂O, 0.280 mol CO, and 0.740 mol H₂ in a 4.00 L container. At equilibrium, [H₂] = 0.200 mol/L.

(5 marks)

a. Fill in the ICE Box below and determine the equilibrium concentrations of all species.

	$CH_{4(g)}$	+	$H_2O_{(g)}$	≠	$CO_{(g)}$	+	3 H _{2 (g)}
Initial							
Change							
Equilibrium							

- **b.** Write the equilibrium expression for the above system.
- c. Determine the value for the equilibrium constant.

- 2. One of the reason why carbon tetrachloride (CCl₄) is so harmful to the environment is because its decomposition is an equilibrium system favouring the reactant even at high temperature. The system, $CCl_{4(g)} \Rightarrow C_{(s)} + 2 Cl_{2(g)}$, has an equilibrium constant, K_P , of 0.76 at 700 K. (5 marks)
 - **a.** Write the equilibrium expression for the decomposition of $CCl_{4(g)}$.
 - **b.** What are the final equilibrium pressures of all gaseous species if 3.00 atm of $CCl_{4(g)}$ is placed in a flask of a constant volume?
 - **c.** Convert K_P into K_c .
- 3. Consider the reaction between ammonia and oxygen.

$$4 \text{ NH}_{3(g)} + 3 \text{ O}_{2(g)} \Rightarrow 2 \text{ N}_{2(g)} + 6 \text{ H}_{2}\text{O}_{(g)}$$
 $(K_c = 1.21 \times 10^{-3} \text{ at } 400. \text{ K})$

- **a.** 4.00 mol of all species are placed in a 5.00 L flask. What are the final equilibrium concentrations all reactants and products?
- **b.** Find the K_c for $\frac{4}{3}$ NH_{3 (g)} + O_{2 (g)} $\Rightarrow \frac{2}{3}$ N_{2 (g)} + 2 H₂O (g)
- 4. Given the following data at 25°C,

$$2 \operatorname{NO}_{(g)} \rightleftharpoons \operatorname{N}_{2(g)} + \operatorname{O}_{2(g)} \qquad \qquad K = 1.2 \times 10^{-30}$$
$$2 \operatorname{NO}_{(g)} + \operatorname{Br}_{2(g)} \rightleftharpoons 2 \operatorname{NOBr}_{(g)} \qquad \qquad K = 81.$$

Calculate K for the formation of one mole of NOBr from its elements in gaseous state at 25°C.

Answers

Part A: Multiple Choice

1.	D	2.	А	3.	С	4.	С	5.	В	6.	D	7.	В	8.	С	9.	В	10.	A
11.	D	12.	А																

Part B: Written Response

1. a.

	$CH_{4(g)}$ +	+ H ₂ O _(g)	=	CO (g)	+ $3 H_{2(g)}$
Initial	$\frac{0.060 \text{ mol}}{4.00 \text{ L}} = 0.015 \text{ M}$	$\frac{0.080 \text{ mol}}{4.00 \text{ L}} = 0.020 \text{ M}$		$\frac{0.280 \text{ mol}}{4.00 \text{ L}} = 0.070 \text{ M}$	$\frac{0.740 \text{ mol}}{4.00 \text{ L}} = 0.185 \text{ M}$
Change	- (0.005 M)	- (0.005 M)		+ (0.005 M)	+ (0.015 M)
Equilibrium	0.010 M	0.015 M		0.075 M	0.200 M

b.
$$K = \frac{[CO][H_2]^3}{[CH_4][H_2O]}$$
 c. $K = 4.0$

2. a.
$$K_P = \frac{(P_{\text{Cl}_2})^2}{(P_{\text{CCl}_4})}$$
 b. $(P_{\text{CCl}_4})_{eq} = 2.33 \text{ atm}, \text{ and } (P_{\text{Cl}_2})_{eq} = 1.33 \text{ atm}$ **c.** $K_c = 0.0132$

3 a. $[NH_3]_{eq} = 1.07 \text{ M}; [O_2]_{eq} = 1.00 \text{ M}, [N_2]_{eq} = 0.664 \text{ M}; [H_2O]_{eq} = 0.393 \text{ M},$ **b.** $K_c = 0.107$ **4.** $K = 8.2 \times 10^{15}$

(5 marks)

(3 marks)