Honour Chemistry: Unit 5 Practice Test: Chemical Kinetics and Equilibrium
Name: \qquad Date: \qquad

$$
K_{P}=K_{c}(R T)^{\Delta n} \quad R=0.08206 \mathrm{~K}^{-1}
$$

Part A: Multiple Choice

1. Which of the following will shift to the reactant(s) as a result of a decrease in volume?
A. $\mathrm{H}_{2(g)}+\mathrm{Cl}_{2(g)} \rightleftharpoons 2 \mathrm{HCl}_{(g)}$
B. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$
C. $4 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$
D. $2 \mathrm{SO}_{3(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
2. Which statement is true for the reaction, $2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{CO}_{2(g)}$, if its equilibrium constant equals 1.6×10^{6} ?
A. It essentially goes to completion at equilibrium.
B. It goes only in one direction.
C. The products will not form.
D. It takes place very rapidly.
3. One of the byproducts of the cracking process used in petroleum refineries is ethyne $\left(\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})\right)$. In the
presence of palladium catalyst, the ethyne forms ethene and ethane. This reaction is represented by the unbalanced equation

$$
\mathrm{C}_{2} \mathrm{H}_{2(g)}+\mathrm{H}_{2(g)} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4(g)}+\mathrm{C}_{2} \mathrm{H}_{6(g)}+\text { energy }
$$

The energy diagram that represents both the catalyzed (-----) and uncatalyzed reactions (-$)$ is
A.

Reaction coordinate
C.

Reaction coordinate

Reation coordinate

B.

Reaction coordinate
D.

Reaction coordinate

Block: \qquad
Total: 30 marks (1 mark each)
4. When phosphorus, $\mathrm{P}_{4(\mathrm{~s})}$, is exposed to air, it ignites spontaneously and rapidly releases $2940 \mathrm{~kJ} / \mathrm{mol}$. Which of the following potential energy diagrams best represents this reaction?
Reaction coordinate

A.
C.

B.

Reaction coordinate
D.

Use the following information to answer the next question.
The equilibrium expression for an industrial method of producing ethanol is

$$
K=\frac{\left\lfloor\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{g})}\right\rfloor}{\left[\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}\right]\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right]}
$$

Under certain conditions, $K=300.0$. At equilibrium, a 5000 L reaction vessel contains 115 mol of $\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}$ and 110 mol of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$.
5. Under these conditions, the equilibrium concentration of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(g)}$ is
A. $1.60 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$
B. $0.152 \mathrm{~mol} / \mathrm{L}$
C. $75.0 \mathrm{~mol} / \mathrm{L}$
D. $5.92 \times 10^{5} \mathrm{~mol} / \mathrm{L}$

Use the following information to answer the next two questions.
Coal and natural gas contain trace amounts of sulfur compounds, which when burned, may lead to acid rain pollution.

Reactions Related to Acid Rain

I $\quad 2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{SO}_{2(\mathrm{~g})}$
II $\quad 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$
III $\quad \mathrm{SO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{SO}_{3(a q)}$
IV $\quad 2 \mathrm{SO}_{3(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{SO}_{4(a q)}$
6. The equilibrium expression for reaction I is
A. $K=\frac{\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right]^{2}+\left[\mathrm{SO}_{2(\mathrm{~g})}\right]^{2}}{\left[\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}\right]^{2}+\left[\mathrm{O}_{2(\mathrm{~g})}\right]^{3}}$
B. $K=\frac{\left[\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}\right]^{2}+\left[\mathrm{O}_{2(\mathrm{~g})}\right]^{3}}{\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right]^{2}+\left[\mathrm{SO}_{2(\mathrm{~g})}\right]^{2}}$
C. $K=\frac{\left[\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}\right]^{2}\left[\mathrm{O}_{2(\mathrm{~g})}\right]^{3}}{\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right]^{2}\left[\mathrm{SO}_{2(\mathrm{~g})}\right]^{2}}$
D. $K=\frac{\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right]^{2}\left[\mathrm{SO}_{2(\mathrm{~g})}\right]^{2}}{\left[\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}\right]^{2}\left[\mathrm{O}_{2(\mathrm{~g})}\right]^{3}}$
7. At 900 K , the equilibrium constant for reaction II is 13.0 . The equilibrium concentrations are $\left[\mathrm{SO}_{2(\mathrm{~g})}\right]=0.361 \mathrm{~mol} / \mathrm{L}$ and $\left[\mathrm{SO}_{3(\mathrm{~g})}\right]=0.840 \mathrm{~mol} / \mathrm{L}$. Given this information, the calculated equilibrium concentration for $\mathrm{O}_{2(\mathrm{~g})}$ is
A. $0.179 \mathrm{~mol} / \mathrm{L}$
B. $0.416 \mathrm{~mol} / \mathrm{L}$
C. $2.40 \mathrm{~mol} / \mathrm{L}$
D. $5.59 \mathrm{~mol} / \mathrm{L}$

Use the following information to answer the next question.
Some of the $\mathrm{SO}_{2(\mathrm{~g})}$ produced from the burning of coal and natural gas can react with $\mathrm{NO}_{2(\mathrm{~g})}$ in the atmosphere according to the equation

$$
\mathrm{SO}_{2(g)}+\mathrm{NO}_{2(g)} \rightleftharpoons \mathrm{NO}_{(\mathrm{g})}+\mathrm{SO}_{3(g)} \quad \Delta H=-41.9 \mathrm{~kJ}
$$

8. The equilibrium concentration of $\mathrm{SO}_{3(\mathrm{~g})}$ in the reaction could be increase by
A. raising the temperature
B. adding a catalyst
C. adding $\mathrm{NO}_{2(g)}$
D. removing $\mathrm{SO}_{2(\mathrm{~g})}$

Use the following information to answer the next two questions.
Carbon Monoxide is commonly produced by passing hydrogen gas through carbon dioxide.

$$
\Gamma \Omega_{\cdots} \ldots+\mathrm{H}_{\ldots} \ldots \mathrm{H}_{\wedge} \cap \ldots+\Gamma \cap \ldots
$$

9. Which two stresses will each cause the equilibrium to shift to the reactants?
A. increase $\left[\mathrm{H}_{2}\right]$ and increase $[\mathrm{CO}]$
B. decrease $\left[\mathrm{H}_{2}\right]$ and increase $\left[\mathrm{H}_{2} \mathrm{O}\right]$
C. increase $\left[\mathrm{CO}_{2}\right]$ and decrease $[\mathrm{CO}]$
D. decrease $\left[\mathrm{CO}_{2}\right]$ and decrease $\left[\mathrm{H}_{2} \mathrm{O}\right]$
10. Which of the following graphs represents the forward reaction when $\mathrm{H}_{2} \mathrm{O}_{(g)}$ is added to the above equilibrium at time $=t_{1}$?
A.

B.
$\left[\mathrm{H}_{2} \mathrm{O}_{(g)}\right]$

C.

D.

11. The equilibrium system $2 \mathrm{NH}_{3(g)} \rightleftharpoons \mathrm{N}_{2(g)}+3 \mathrm{H}_{2(\mathrm{~g})}$. Initially, some NH_{3} is placed into a 1.0 L container. At equilibrium, there is $0.030 \mathrm{~mol} \mathrm{~N}_{2}$ present. What is the concentration of H_{2} at equilibrium?
A. $0.010 \mathrm{~mol} / \mathrm{L}$
B. $0.030 \mathrm{~mol} / \mathrm{L}$
C. $0.060 \mathrm{~mol} / \mathrm{L}$
D. $0.090 \mathrm{~mol} / \mathrm{L}$
12. Which reaction has the equilibrium expression, $K=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\left[\mathrm{NO}_{2}\right]^{4}}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{7}}$?
A. $4 \mathrm{NH}_{3(g)}+7 \mathrm{O}_{2(g)} \rightleftharpoons 4 \mathrm{NO}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
B. $4 \mathrm{NH}_{3(g)}+7 \mathrm{O}_{2(g)} \rightleftharpoons 4 \mathrm{NO}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(l)}$
C. $4 \mathrm{NO}_{3(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons 4 \mathrm{NH}_{3(\mathrm{~g})}+7 \mathrm{O}_{2(\mathrm{~g})}$
D. $4 \mathrm{NO}_{3(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons 4 \mathrm{NH}_{3(\mathrm{~g})}+7 \mathrm{O}_{2(\mathrm{~g})}$

Part B: Written Response

1. The equilibrium system, $\mathrm{CH}_{4(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})}$, initially has $0.060 \mathrm{~mol} \mathrm{CH}_{4}, 0.080 \mathrm{~mol}$ $\mathrm{H}_{2} \mathrm{O}, 0.280 \mathrm{~mol} \mathrm{CO}$, and $0.740 \mathrm{~mol} \mathrm{H}_{2}$ in a 4.00 L container. At equilibrium, $\left[\mathrm{H}_{2}\right]=0.200 \mathrm{~mol} / \mathrm{L}$.
(5 marks)
a. Fill in the ICE Box below and determine the equilibrium concentrations of all species.

$\mathrm{CH}_{4(g)}$	$+\quad \mathrm{H}_{2} \mathrm{O}_{(g)}$	\rightleftharpoons	$\mathrm{CO}_{(g)} \quad+$		
Initial					
Change					
Equilibrium					

b. Write the equilibrium expression for the above system.
c. Determine the value for the equilibrium constant.
2. One of the reason why carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ is so harmful to the environment is because its decomposition is an equilibrium system favouring the reactant even at high temperature. The system, $\mathrm{CCl}_{4(\mathrm{~g})} \rightleftharpoons \mathrm{C}_{(\mathrm{s})}+2 \mathrm{Cl}_{2(\mathrm{~g})}$, has an equilibrium constant, K_{P}, of 0.76 at 700 K .
(5 marks)
a. Write the equilibrium expression for the decomposition of $\mathrm{CCl}_{4(\mathrm{~g})}$.
b. What are the final equilibrium pressures of all gaseous species if 3.00 atm of $\mathrm{CCl}_{4(\mathrm{~g})}$ is placed in a flask of a constant volume?
c. Convert K_{P} into K_{c}.
3. Consider the reaction between ammonia and oxygen.
(5 marks)

$$
4 \mathrm{NH}_{3(g)}+3 \mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{~N}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)} \quad\left(K_{c}=1.21 \times 10^{-3} \text { at } 400 . \mathrm{K}\right)
$$

a. 4.00 mol of all species are placed in a 5.00 L flask. What are the final equilibrium concentrations all reactants and products?
b. Find the K_{c} for $4 / 3 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 / 3 \mathrm{~N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
4. Given the following data at $25^{\circ} \mathrm{C}$,
(3 marks)

$$
\begin{aligned}
2 \mathrm{NO}_{(g)} & \rightleftharpoons \mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} & & K=1.2 \times 10^{-30} \\
2 \mathrm{NO}_{(g)}+\mathrm{Br}_{2(g)} & \rightleftharpoons 2 \operatorname{NOBr}_{(g)} & & K=81 .
\end{aligned}
$$

Calculate K for the formation of one mole of NOBr from its elements in gaseous state at $25^{\circ} \mathrm{C}$.

Answers

Part A: Multiple Choice

1. D
2. A
3. C
4. C
5. B
6. D
7. B
8. C
9. B
10. A
11. D
12. A

Part B: Written Response

1. a.

	$\mathrm{CH}_{4(\mathrm{~g})}$	$\mathrm{H}_{2} \mathrm{O}_{(g)}$	$\mathrm{CO}_{(g)}$	$3 \mathrm{H}_{2(\mathrm{~g})}$
Initial	$\begin{aligned} & \frac{0.060 \mathrm{~mol}}{4.00 \mathrm{~L}} \\ &= \mathbf{0 . 0 1 5} \mathbf{~ M} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{0.080 \mathrm{~mol}}{4.00 \mathrm{~L}} \\ &= \mathbf{0 . 0 2 0} \mathrm{M} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{0.280 \mathrm{~mol}}{4.00 \mathrm{~L}} \\ &= \mathbf{0 . 0 7 0} \mathbf{~ M} \\ & \hline \end{aligned}$	$\begin{gathered} \frac{0.740 \mathrm{~mol}}{4.00 \mathrm{~L}} \\ =\mathbf{0 . 1 8 5 \mathrm { M }} \\ \hline \end{gathered}$
Change	- (0.005 M)	- (0.005 M)	+ (0.005 M)	+ (0.015 M)
Equilibrium	$\mathbf{0 . 0 1 0}$ M	0.015 M	$\mathbf{0 . 0 7 5 ~ M ~}$	0.200 M

b. $K=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
c. $K=4.0$
2. a. $K_{P}=\frac{\left(P_{\mathrm{Cl}_{2}}\right)^{2}}{\left(P_{\mathrm{CCl}_{4}}\right)}$
b. $\left(P_{\mathrm{CC}_{4}}\right)_{e q}=2.33 \mathrm{~atm}$, and $\left(P_{\mathrm{Cl}_{2}}\right)_{e q}=1.33 \mathrm{~atm}$
c. $K_{c}=0.0132$

3
a. $\left[\mathrm{NH}_{3}\right]_{e q}=1.07 \mathrm{M} ;\left[\mathrm{O}_{2}\right]_{e q}=1.00 \mathrm{M},\left[\mathrm{N}_{2}\right]_{e q}=0.664 \mathrm{M} ;\left[\mathrm{H}_{2} \mathrm{O}\right]_{e q}=0.393 \mathrm{M}$,
b. $K_{c}{ }^{\prime}=0.107$
4. $K=8.2 \times 10^{15}$

