Honour Chemistry: Unit 6 Practice Test: Acids and Bases

Na	ame:	Date:			Block:						
<u>Pa</u>	urt A: Multiple Choice and I	Numerical Response		(1 mark eac (2 marks each for	Total: 40 marks each for Multiple Choice) for Numerical Response)						
1.	The list of substances conta	aining only acids is									
	A. soda pop, grapefruit juiC. milk of magnesia, eggs	ce, household ammonia. , sea water.	B. D.	household ammonia, vinegar, lemon juice,	vinegar, soda pop. soda pop.						
2.	The equation which represe	ents the acid dissociation of	HS-(_{aq)} is							
	A. $HS^{-}_{(aq)} + H_2O_{(l)} \rightleftharpoons H_2S^{-}$ C. $HS^{-}_{(aq)} + H_2O_{(l)} \rightleftharpoons S^{2-}$	$S_{(aq)} + OH_{(aq)}$ $(aq) + H_3O^{+}(aq)$	B. D.	$HS^{-}_{(aq)} + H_{3}O^{+}_{(aq)} \rightarrow$ $HS^{-}_{(aq)} + H_{2}O_{(l)} \rightleftharpoons H_{3}$	$H_2S_{(aq)} + H_2O_{(l)}$ $I_{2(g)} + S^{2-}_{(aq)} + OH^{-}_{(aq)}$						
3.	3. In an experiment, 20.0 mL of 0.10 mol/L HCl $_{(aq)}$ was titrated with 20.0 mL of 0.10 mol/L KOH $_{(aq)}$ to the equivalence point. The pH at the equivalence point would be										
	A. 1.00	B. 3.0	C.	7.00	D. 12.00						
N	umerical Response										
1.	To the nearest tenth, the pH	of a basic solution that has	an [$[OH_{(aq)}]$ of 6.40×10^{-3}	mol/L is						

Use the following observations to answer the next question.

	<u>Solution</u>	Observation						
	Solution I Solution II Solution III Solution IV	has a large pH, conducts electricity turns litmus blue, forms an aqueous solution having no conductivity conducts electricity; reacts with $Zn_{(s)}$ to form $H_{2(g)}$ has a large pH; turns pink when phenolphthalein is added						
tudent made one error in recording observations on four unknown solutions. For which solution did								

4. A student made one error in recording observations on four unknown solutions. For which solution did the error occur?

A. I **B.** II **C.** III **D.** IV

5. When a small amount of either an acid or a base is added to the buffered solution, the buffer will

A. be consumed in the reaction to change the pH of the solution.

B. act in the same way as the inflection area of a titration curve.

C. cause a dramatic change in pH of the solution.

D. resist a change in pH of the solution.

Numerical Response

2 To the nearest tenth, the volume of 2.00 mol/L H_2SO_4 solution would be needed to react completely with 4.20 g of solid Na_2CO_3 is _____ mL.

A standard solution of $KOH_{(aq)}$ was used to titra until the endpoint was reached. The following d	ate an unknown solid acid sample (HA) ata were obtained:
Mass of acid in sample	0.25 g
Concentration of standard KOH	(<i>ag</i>) 0.100 mol/L
Initial buret reading KOH _(aq)	0.50 mL
Final buret reading KOH (aq)	29.64 mL

6. The molar mass of the unknown acid is

A. 83 g/mol B. 86 g/mol	C. 2.5×10^2 g/mol	D. 8.6×10^3 g/mol
---------------------------------------	-----------------------------------	-----------------------------------

Use the following information to answer the next question.

Numerical Response

3. To the nearest hundredth, the pH of a solution with a pOH of 6.95 is Chromium(VI) oxide is used to form the highly acidic "dichromic acid" in chromium plating solution. Production of "dichromic acid" is $2 \operatorname{CrO}_{3(aq)} + \operatorname{H_2O}_{(l)} \rightarrow \operatorname{H_2Cr_2O}_{7(aq)}$. The "dichromic acid" ionizes 100% in water as $\operatorname{H_2Cr_2O}_{7(aq)} + \operatorname{H_2O}_{(l)} \rightarrow \operatorname{H_3O}_{(aq)}^+ + \operatorname{HCr_2O}_{7(aq)}^-$.

8. What is the pH in a chromium plating solution in a 1000 L tank when 240.0 g/L of $CrO_{3(s)}$ is dissolved?

A. -0.0792 B. -0.3802 C. 2.620 D. 2.921

- **9.** Barium carbonate is used to modify the pH in chromium plating solutions. The addition of solid barium carbonate
 - A. decreases the pH and decreases the $[H_3O^+_{(aq)}]$
 - **C.** increases the pH and increases the $[H_3O^+_{(aq)}]$
- **B.** decreases the pH and increases the $[H_3O^+_{(aq)}]$
- **D.** increases the pH and decreases the $[H_3O^+_{(aq)}]$

Use the following information to answer the next question.

The graph below represents results from the titration of an acetic acid sample with a potassium hydroxide solution. 12 11 10 9 pН 8 7 6 5 4 3 2 1 8 12 16 20 24 28 32 0 4 mL KOH

10. At the pH indicated by the point on the graph, the most abundant chemical species would be

A. H₃O⁺_(*aq*), OH⁻_(*aq*), H₂O _(*l*) **C.** CH₃COOH _(*aq*), KOH _(*aq*), H₂O _(*l*) **B.** CH₃COO⁻(*aq*), K⁺(*aq*), H₂O (*l*) **D.** CH₃COOH (*aq*), OH⁻(*aq*), K⁺(*aq*), H₂O (*l*) 11. In industry, some of the empirical properties of a substance are selected as safe and efficient diagnostic tests. In the electroplating industry, the **safest** and **most efficient** diagnostic test for acids is the one where

A. acids react with active metals to produce hydrogen gas **B.** acids taste sour

- C. acids react with carbonates to produce carbon dioxide gas D. blue litmus turns red in acid solution
- **12.** A 0.100 mol/L propanoic acid solution, $C_2H_5COOH_{(aq)}$, has a pH of 2.95. From these data, the K_b for the propanoate ion, $C_2H_5COO^-_{(aq)}$, is

A. 1.1×10^{-3} **B.** 1.3×10^{-5} **C.** 7.9×10^{-10} **D.** 8.7×10^{-12}

The Haber process uses hydrogen and nitrogen to produce ammonia for use as a feedstock for other processes or as a fertilizer. In industry, the goal of manufacturing is to obtain the highest yield of product for the lowest cost.

13. Ammonia could also be produced industrially, by reacting ammonium ion with hydrogen sulfate ion according to the equation

$$NH_4^+(aq) + HSO_4^-(aq) \Rightarrow NH_3(aq) + H_2SO_4(aq)$$

A conjugate acid base pair is

A.	$NH_4^+_{(aq)}$ and $HSO_4^{(aq)}$	B.	$HSO_4^{-}(aq)$ and $NH_3^{-}(aq)$
C.	$H_2SO_{4(aq)}$ and $HSO_{4(aq)}$	D.	$H_2SO_4^{-}(aq)$ and $NH_4^{+}(aq)$

- 14. Fertilizer can then be produced by reacting aqueous ammonia with nitric acid. The correct net ionic equation for this process is
 - A. $NH_{3}(aq) + H_{3}O^{+}(aq) \rightarrow NH_{4}^{+}(aq) + H_{2}O_{(l)}$ B. $NH_{3}(aq) + H_{2}O_{(l)} \rightarrow NH_{2}^{-}(aq) + H_{3}O^{+}(aq)$ C. $NH_{3}(aq) + HNO_{3}(aq) \rightarrow NH_{4}^{+}(aq) + NO_{3}^{-}(aq)$ D. $H_{3}O^{+}(aq) + NO_{3}^{-}(aq) \rightarrow HNO_{3}(aq) + H_{3}O^{+}(aq) + NH_{4}^{+}(aq)$
- 15. A drop of chlorophenol red is added to a 0.10 mol/L HCl_(aq) sample. The colour of the indicator is
 - **A.** yellow because the pH of the solution is less than 5.2
 - **B.** yellow because the pH of the solution is greater than 5.2
 - **C.** red because the pH of the solution is less than 6.8
 - **D.** red because the pH of the solution is greater than 6.8
- 16. Which of the following species is able to react as either an acid or a base?

A. $CO_3^{2^-}(aq)$ **B.** $CH_3OH_{(aq)}$ **C.** $HS_{(aq)}$ **D.** $NH_{3(aq)}$

17. A buffer system of CH₃COOH_(aq) / NaCH₃COO_(aq) works best if

- A. the solution to be buffered has a pH greater than 7
- **B.** the amount of CH₃COOH_(aq) and CH₃COO⁻_(aq) are large compared to the amount of acid or base added
- C. large amounts of acid or base are added to the buffered system
- **D.** the concentration of $CH_3COO_{(aq)}$ is small compared to the concentration of $CH_3COOH_{(aq)}$

Use the following acid-base equations and key to answer the next two questions.

Equations		
HOCN (aq) + C ₃ H ₅ O ₃ (aq)	$\Rightarrow OCN_{(aq)} + HC_3H_5O_3$	(aq) Products favoured
$HC_{3}H_{5}O_{3(aq)} + C_{6}H_{5}COO^{-}(aq)$	DOH (aq)Products favoured	
HOCN $_{(aq)}$ + IO ₃ $_{(aq)}$	Reactants favoured	
Key		
1 $C_6H_5COOH_{(aq)}$	4 OCN (aq)	7 $HC_3H_5O_{3(aq)}$
$2 C_6H_5COO^{(aq)}$	5 HIO _{3 (<i>aq</i>)}	8 $C_3H_5O_3(aq)$
3 HOCN (aq)	6 $IO_3(aq)$	

Numerical Response

4. The bases, listed in any order, are _____.

Numerical Response

5. The acids, ordered from strongest to weakest, are _____.

Use the following information to answer the next question.

- **18.** On the pH curve showing the titration of a weak base with a strong acid, it can be seen that the pH changes very gradually at I compared to II. The reason for this is that
 - A. the acid is not as strong at I as at II
 - **C.** all the base reacted at I

- **B.** the solution at I is a buffer solution
- **D.** pH always changes rapidly around pH = 7

19. Which of the following graphs **best** represents the neutralization of a diprotic acid by the continuous addition of 0.10 mol/L NaOH $_{(aq)}$?

Use the following information to answer the next question.

A student is asked to determine the molar concentration of acetic acid in a sample of vinegar. A standardized sodium hydroxide solution is available. From the list below, **select the four procedures** you would most likely perform to solve this problem.

- 1 measure and record the initial mass of the vinegar sample
- 2 measure and record the volume of the vinegar sample
- 3 add phenolphthalein to the vinegar sample
- 4 fill a buret with standardized sodium hydroxide solution
- 5 measure and record the final mass of the vinegar sample
- 6 measure and record the initial and final volumes from the buret

Numerical Response

6. The order in which these procedures must be performed is _____.

20. Which of the following is not associated with a 0.10 mol/L solution of a weak acid?

- **A.** $[H_3O^+_{(aq)}] < 0.10 \text{ mol/L}$
- **C.** A small K_a value

B. A relatively strong conjugate base **D.** pH = 1.00

A student titrated 45.0 mL of an unknown monoprotic acid (HA $_{(aq)}$) with a 0.100 mol/L barium hydroxide solution. A pH meter was used to obtained the following curve:

- **1. a.** Based on the results shown on the graph, write a balanced chemical equation and calculate the initial concentration of the unknown acid.
 - **b.** 0.315 g of acid was dissolved in water to make the 45.0 mL of unknown solution. Calculate the molar mass of this acid.
 - c. What can you tell about the strength of this acid? Explain.
 - d. Identify the unknown acid using the Chemistry Data Booklet and the results from part b. and c.

Part A: Multiple Choice and Numerical Response

1. 11.	D D	2. 12.	C C	3. 13.	C C	4. 14.	B A	5. 15.	D A	6. 16.	B C	7. 17.	A B	8. 18.	A B	9. 19.	D A	10. 20.	B D
Nur	neric	al Res	pon	se															
1. 1	1.8		2. 19	9.8		. 7.0	5	4.	2468	8	5.	5371		6. 2	346 (or 243	6 or 4	4236	

Part B: Written Response

- **1. a.** [HA] = 0.111 mol/L = 111 mmol/L
 - **b.** M = 63.0 g/mol
 - **c.** HA would be a <u>strong acid</u> because: Equivalence point has a pH of 7 with a strong base.
 - **d.** HNO₃ = 63.02 g/mol