Unit 4: Trigonometry

7-4: Reviewing Trigonometric Ratios

Example 2: Solve the triangle (find all missing angles and sides).

Example 3: Solve the triangle below.

Example 4: Adam wants to know the approximate height of the school's goal posts. He walks 2.3 m away from the base of the posts. His angle of elevation to the top of the post is 73°. What is the height of the goal post if Adam is 1.8 m tall?

(AP) Example 5: Find the length of the 50° parallel of latitude, to the nearest km. Assume that the radius of the Earth is 6380 km.

7-5: Problems Involving Two Right Triangles

Example 1: A TV antenna is on top of a tall building. A surveyor standing 53.5 m away measured the angle of elevation to the top of the building as 64°. She then measured the angle of elevation to the top of the antenna as 71°. What is the height of the TV antenna to the nearest tenth of a metre?

Example 2: Two buildings are 200 m apart. From a point midway between them, the angles of elevation to the top of each building are 12° and 9° respectively. To the nearest tenth of a metre, how much taller is one building compared to the other?

First, draw a diagram.

Example 3 Two office towers are directly across the street from each other. The smaller tower is 40 m tall. The angle of elevation from the top of the smaller tower to the top of the larger tower is 21°. The angle of depression from the top of the smaller tower to the base of the larger tower is 27°. Determine the height of the larger office tower to the nearest tenth of a metre.

Example 4: Using the diagram below, find the height of the cliff.

Example 5: Mary stood on the east side of the church. She observed an angle of elevation of 25° to the top of the church tower. Joseph stood on the west side of the church. He measured an angle of elevation of 40° to the top of the church tower. Suppose the total distance between Mary and Joseph is 150 m, how tall is the church tower to the nearest tenth of a metre?

Example 6: A plane is flying at a constant height. The pilot observed of an angle of depression of 27° to one end of the lake. At the same time her co-pilot measured an angle of depression of 15° to the opposite end of the lake. Both of them know that the lake is 2 km long. Determine the height of the plane to the nearest tenth of a kilometre.

7-5 Homework Assignments

Regular: pg. 335 to 337 #1 to 17

AP: pg. 335 to 337 # 1 to 19

7-6: Angles in Standard Position

Standard Position Angles: - angles that can be defined on a coordinate grid.

Initial Arm: - the beginning ray of the angle, which is fixed on the positive x-axis.

Terminal Arm: - rotates about the origin (0,0).

- the standard angle (θ) is then measured between the initial arm and terminal arm.

Positive Angle: - angle formed by the terminal arm rotated **counter-clockwise**.

Coterminal Angles: - angles form when the terminal arms ends in the same position.

Negative Angle: - angle formed by the terminal arm rotated **clockwise**.

Reference Angle: - the acute angle between the terminal arm and the *x*-axis for any standard position angle.

Copyrighted by Gabriel Tang, B.Ed., B.Sc.

Unit Circle and the CAST Rule

(AP) If we draw a circle with a radius of 1 unit on the Cartesian coordinate gird, and overlay on it some angles in standard position, we will find the following diagram.

The coordinates (x, y) are the same as $(\cos \theta, \sin \theta)$ of any angle θ in standard positions.

2^{nd} Quadrant Sin $\sin \theta = +$ $\cos \theta = -$ $\tan \theta = -$	1 st Quadrant All $\sin \theta = +$ $\cos \theta = +$ $\tan \theta = +$	S	A
Tan $\sin \theta = -$ $\cos \theta = -$ $\tan \theta = +$ 3^{rd} Quadrant	Cos $\sin \theta = -$ $\cos \theta = +$ $\tan \theta = -$ 4^{th} Quadrant	T	C

Copyrighted by Gabriel Tang, B.Ed., B.Sc.

Example 4: Evaluate the followings to four decimal places.

(AP) Example 5: Using the unit circle, evaluate the exact values of the followings.a. cos 150°b. sin 270°c. sin 135°d.

 $\sin 270^{\circ} = -1$

d. cos 300°

 $\cos 300^{\circ} = \frac{1}{2}$

Example 6: Find the angles from the followings trigonometric ratios to the nearest degree if $0^{\circ} \le \theta \le 180^{\circ}$

a. $\cos \theta = -0.5467$

 $\cos 150^\circ = \frac{-\sqrt{3}}{2}$

We know that for θ between 0° to 180° , when $\cos \theta$ is negative, the angle must be in the second quadrant.

b.
$$\tan \theta = -1.4277$$

tan⁻¹(-1.4277)
-54.99155341

We know that for θ between 0° to 180°, when tan θ is negative, the angle must be in the 2nd quadrant. However, the answer on the calculator indicates that it is at the 4th quadrant. We will have to use the reference angle of 55°.

We know that for θ between 0° to 180°, when sin θ is positive, the angle can be in the 1st or 2nd quadrant. However, the answer on the calculator indicates that it is at the 1st quadrant only. We will have to use the reference angle of 55° to figure out the next possible angle.

 $\sin 135^\circ = \frac{\sqrt{2}}{2}$

Example 7: Find the angles from the followings trigonometric ratios to the nearest degree if $0^{\circ} \le A \le 360^{\circ}$

- Step 1: Ignore negative sign when using the 2^{nd} sin, cos, or tan on the calculator to find the reference angle.
- **Step 2**: Draw the *x*-*y* gird and label the possible quadrants for the angles based on whether the trig ratio is positive or negative.
- **Step 3**: Find the actual angles between 0° and 360° using the reference angle.

Example 8: Each of the following coordinates is on the terminal arm of angle θ in standard positions. Find the angles to the nearest degree.

7-6 Homework Assignments

Regular: pg. 341-342 #1 to 26 & Worksheet 7-6: Angles in Standard Positions

AP: pg. 341-342 # 1 to 29 & Worksheet 7-6: Angles in Standard Positions

7-6 Worksheet: Angles in Standard Positions

1.	Draw each angle in standard p a) $\theta = 50^{\circ}$ e) $\theta = 90^{\circ}$ i) $\theta = 400^{\circ}$	b) $\theta = 120^{\circ}$ f) $\theta = -180^{\circ}$ j) $\theta = 750^{\circ}$	angle.	c) g) k)	$\theta = 165^{\circ}$ $\theta = 45^{\circ}$ $\theta = -270^{\circ}$		(]]	d) h) l)	$\theta = 240^{\circ}$ $\theta = 270^{\circ}$ $\theta = -60^{\circ}$
2.	Find two other angles, which ar a) $\theta = 60^{\circ}$ e) $\theta = 180^{\circ}$	b) $\theta = -210^{\circ}$ f) $\theta = 90^{\circ}$		c) g)	$\theta = 225^{\circ}$ $\theta = -60^{\circ}$		(d) h)	$\theta = -90^{\circ}$ $\theta = -360^{\circ}$
3.	<i>P</i> is a point on the terminal arm • the number of co • the quadrant whe • draw a diagram t a) $\theta = 480^{\circ}$	of an angle θ in standard pos- omplete rotations. ere <i>P</i> is located. to show the position of <i>P</i> b) $\theta = 660^{\circ}$	sition. F	For t	the following a $\theta = 870^{\circ}$	ngles, find		d)	$\theta = 1000^{\circ}$
	e) $\theta = 180^{\circ}$	f) $\theta = 270^{\circ}$		g)	$\theta = 360^{\circ}$		1	h)	$\theta = 450^{\circ}$
	,	,		3)	•		-	,	
4.	Each point <i>P</i> is on the termina $\cos \theta$, and $\tan \theta$.	l arm of an angle θ . Use a dia	agram to	o ca	lculate the exa	ct values of	sin θ,		
	a) <i>P</i> (12, -5)	b) P (-4, -2)		c)	<i>P</i> (-3, 1)		(d)	<i>P</i> (−3, −4)
	e) <i>P</i> (6, -2)	f) <i>P</i> (2, 9)	(AP)	g)	P(0, 4)	((AP) l	h)	P(-5, 0)
5.	Find the values of the following r_{1}^{0} sin 120°	g to 4 decimal places.			t_{00} 120 ⁰			4)	cin 200°
	e) $\cos 260^{\circ}$	f) $\sin 325^{\circ}$		() ()	$\tan 347^{\circ}$		1	4) h)	$cos 534^{\circ}$
	i) $\sin 23^\circ$	i) $\cos 34^{\circ}$		$\frac{\delta}{k}$	$\tan 347$ $\tan 72^{\circ}$		1	D	$\sin 103^{\circ}$
	m) $\cos 172^{\circ}$	n) $\tan 238^\circ$		0)	sin 309°		1	p)	$\cos 501^{\circ}$
	,	,					-	. /	
6.	The angle θ is in the first quadra	ant, and $\tan \theta = \frac{2}{3}$,							
	 a) Draw a diagram showing the angle in standard position and a point <i>P</i> on its terminal arm. b) Determine possible coordinates for <i>P</i>. 								
	c) Find the other two trigono	bis for θ .	5						
7.	Repeat Question 6 if θ is in the	second quadrant, and tan θ =	$=-\frac{3}{2}$.						
8.	Repeat Question 6 if θ is in the	second quadrant, and $\sin \theta =$	$=\frac{2}{\sqrt{5}}$.						
9.	Solve for θ to the nearest degr	ee for $0^{\circ} \le \theta \le 90^{\circ}$.							
	a) $\sin \theta = 0.35$	b) $\cos \theta = 0.112$				c) $\tan \theta = 0$	0.485		
	d) $\cos \theta = \frac{4}{5}$	e) $\sin \theta = \frac{9}{10}$				f) $\tan \theta = 2$	2		
10	. Solve for θ to the nearest degree	the for $0^{\circ} \le \theta \le 180^{\circ}$.							
	a) $\sin \theta = 0.82$	b) $\cos \theta = 0.75$				c) $\tan \theta = -$	-0.685		
	d) $\cos \theta = -1$	a) $\sin \theta = 1$				f) $\tan \theta = 1$	16		
	$\frac{1}{9}$	e) $\sin \theta = \frac{1}{4}$				1 $an \theta = -$	5		

Trigonometry

11. Solve for θ to the nearest	degree for $0^{\circ} \le \theta < 360^{\circ}$.		
a) $\sin \theta = 0.75$	b) $\cos \theta = 0.0965$	c) $\tan \theta = 0.1392$	d) $\cos \theta = 0.3558$
e) $\sin \theta = 0.6666$	f) $\tan \theta = 2.671$	g) $\sin \theta = -0.6855$	h) $\cos \theta = -0.1881$
i) $\tan \theta = -0.2550$	j) $\cos \theta = -0.8245$	k) $\tan \theta = -3.1067$	$1) \sin \theta = -0.8040$
12. Solve for θ to the nearest	degree for $0^{\circ} \le \theta < 360^{\circ}$.		

a) $\tan \theta = 1$	b) $\cos \theta = \frac{1}{2}$	c) $\cos \theta = \frac{\sqrt{2}}{2}$
d) $\sin \theta = \frac{\sqrt{3}}{2}$	e) $\tan \theta = \frac{1}{\sqrt{3}}$	f) $\cos \theta = -\frac{\sqrt{3}}{2}$
g) $\tan \theta = -\sqrt{3}$	h) $\cos \theta = -\frac{1}{2}$	i) $\sin \theta = -\frac{\sqrt{2}}{2}$

13. The point given is on the terminal arm of an angle θ in standard position. Find a value of θ to the nearest degree. a) P(-1, -4)b) Q(3, -4)c) R(2, -3)d) S(-1, 2)

(AP) 14. State the exact value of each ratio. b) $\cos 150^{\circ}$ c) $\sin 90^{\circ}$ d) $\cos 270^{\circ}$ a) $\sin 120^{\circ}$ e) $\sin 240^\circ$ f) $\cos 315^{\circ}$ g) $\sin 360^\circ$ h) $\cos 90^{\circ}$ 1) $\cos(-60^{\circ})$ i) $\sin 300^{\circ}$ i) $\cos 480^{\circ}$ k) $\sin(-150^{\circ})$ (AP) 15. Using the unit circle, solve for θ to the nearest degree for $0^{\circ} \le \theta < 360^{\circ}$.

a)
$$\sin \theta = 0$$
b) $\cos \theta = -1$ c) $\sin \theta = 1$ d) $\cos \theta = 0$ e) $\sin \theta = -1$ f) $\cos \theta = 1$ f) $\tan \theta = 0$ g) $\tan \theta =$ undefined

ANSWERS

1a) 50° **b**) 60° **c**) 15° **d**) 60° **e**) 90° **f**) 0° **g**) 45° **h**) 90° **i**) 40° **j**) 30° **k**) 90° **l**) 60° **2a)** 420° , -300° **b)** 150° , 510° **c**) -135° , 585° **d**) 270° , 630° **e**) -180° , 540° **f**) -270° , 450° **g**) 300° , 660° **h**) 0° , 360° **3a**) 1 rotation, 2^{nd} quadrant **b**) 1 rotation, 4^{th} quadrant **c**) 2 rotations, 2^{nd} quadrant **d**) 2 rotations, 3^{rd} quadrant **e**) 0 rotation, -x axis **f**) 0 rotation, -y axis **g**) 1 rotation, +x axis **h**) 0 rotation, +y axis **4a**) $\sin \theta = -\frac{5}{13} \cos \theta = \frac{12}{13} \tan \theta = -\frac{5}{12}$ **b**) $\sin \theta = -\frac{2}{\sqrt{20}} \cos \theta = -\frac{4}{\sqrt{20}} \tan \theta = \frac{1}{2}$ **c)** $\sin \theta = \frac{1}{\sqrt{10}} \cos \theta = -\frac{3}{\sqrt{10}} \tan \theta = -\frac{1}{3}$ **d)** $\sin \theta = -\frac{4}{5} \cos \theta = -\frac{3}{5} \tan \theta = \frac{4}{3}$ **e)** $\sin \theta = -\frac{2}{\sqrt{40}} \cos \theta = \frac{6}{\sqrt{40}} \tan \theta = -\frac{1}{3}$ **f**) $\sin\theta = \frac{9}{\sqrt{85}}$ $\cos\theta = \frac{2}{\sqrt{85}}$ $\tan\theta = \frac{9}{2}$ **g**) $\sin\theta = 1$ $\cos\theta = 0$ $\tan\theta =$ undefined **h**) $\sin\theta = -1$ $\cos\theta = 1$ $\tan\theta = 0$ 5a) 0.7660 b) -0.8192 c) -1.1918 d) -0.3420 e) -0.1736 f) -0.5736 g) -0.2309 h) -0.9945 i) 0.3907 j) 0.8290 k) 3.0777 **1**) 0.9744 **m**) -0.9903 **n**) 1.6003 **o**) -0.7771 **p**) -0.7771 **6b**) (3, 2) **c**) $\sin \theta = \frac{2}{\sqrt{13}} \cos \theta = \frac{3}{\sqrt{13}}$ **7b)** (-2, 5) **c)** $\sin\theta = \frac{5}{\sqrt{29}} \cos\theta = -\frac{2}{\sqrt{29}}$ **8b)** (-1, 2) **c)** $\cos\theta = -\frac{1}{\sqrt{5}} \tan\theta = -2$ **9a)** 20° **b)** 84° **c)** 26° **d)** 37° **e)** 64° **f)** 63° **10a)** 55° and 125° **b)** 41° **c)** 146° **d)** 96° **e)** 14° and 166° **f)** 73° **11a)** 49° and 131° **b**) 84° and 276° **c**) 8° and 188° **d**) 69° and 291° **e**) 42° and 138° **f**) 69° and 249° **g**) 223° and 317° **h**) 101° and 259° **i**) 166° and 346° **j**) 146° and 214° **k**) 108° and 288° **l**) 234° and 306° **12a**) 45° and 225° **b**) 60° and 300° **c**) 45° and 315° **d**) 60° and 120° **e**) 30° and 210° **f**) 150° and 210° **g**) 120° and 300° **h**) 120° and 240° **i**) 225° and 315° **13a**) 256° **b**) 307° 14a) $\frac{\sqrt{3}}{2}$ b) $-\frac{\sqrt{3}}{2}$ c) 1 d) 0 e) $-\frac{\sqrt{3}}{2}$ f) $\frac{\sqrt{2}}{2}$ g) 0 h) 0 i) $-\frac{\sqrt{3}}{2}$ j) $-\frac{1}{2}$ k) $-\frac{1}{2}$ l) $\frac{1}{2}$ **c)** 304° **d)** 117°

15a) 0° and 180° **b**) 180° **c**) 90° **d**) 90° and 270° **e**) 270° **f**) 0° and 180° **g**) 90° and 270°

7-7: The Law of Sines

Example 1: In $\triangle ABC$, $\angle A = 35^{\circ}$, $\angle B = 60^{\circ}$, and a = 10 cm. Solve the triangle to the nearest degree and to the nearest centimetre.

First, draw $\triangle ABC$ and label appropriately.

Example 2: In $\triangle PQR$, $\angle Q = 125^{\circ}$, p = 40 m, and q = 95 m. Solve the triangle to the nearest degree and to the nearest metre.

First, draw \triangle PQR and label appropriately.

Example 3: A hot air balloon is helping to produce TV coverage for the Grey Cup. The top of the stadium is 300 m wide and the angles of depression to each side of the stadium are 9° and 15° respectively with the balloon off at one side of the stadium. To the nearest tenth of a metre, determine the distance between the hot air balloon to the closest side of the stadium and its altitude?

Example 4: Three watchtowers are located at positions A, B and C. Tower A and B is 20 km apart, and towers B and C are 12 km apart. The angle between the lines of sight from C to A and C to B is 95°. To the nearest degree, what is the angle between the lines of sight from B to A and B to C?

Draw \triangle ABC and label appropriately. Since we do not know

Since we do not know side *b*, we need to solve for $\angle A$ first.

(AP) The Ambiguous Case of the Law of Sines

(AP) Example 5: Solve $\triangle ABC$ to the nearest degree and to the nearest centimetre given $\angle A = 50^{\circ}$, a = 11 cm, and c = 12 cm.

(AP) Example 6: The Joker is making an escape by hang-gliding above a speedboat with a 50 m long rope. Batman shot his hook at the Joker, which is attached to a 40 m ultra-light steel string from the shore. Suppose the Joker observed an angle of depression of 43° to the speedboat, find the distance between the speedboat and Batman to the nearest metre, and the angle of depression the Joker makes to Batman to the nearest degree.

7-8: The Law of Cosines

Example 1: In $\triangle ABC$, $\angle A = 105^{\circ}$, b = 18 m and c = 25 m. Solve the triangle to the nearest degree and to the nearest tenth of a metre.

Example 3: A police and his motorcycle are at the Y intersection of two straight roads. By means of a radio scanner, he knows that a truck Is 45 km from the intersection on one road and a car is 39 km from the intersection on the other road. The roads intersect at Y at an angle of 148°. Calculate the distance between the truck and the car to the nearest tenth of a kilometre.

Example 4: Standard soccer goal posts are 6 m apart. A player attempts to kick a ball between the posts from a point where the ball is 28 m from one end of the goal posts and 32 m from the other end of the posts. To the nearest tenth of a degree, within what angle must the player kick the ball?

7-8 Homework Assignments

Regular: pg. 352-353 #1 to 21

AP: pg. 352-353 #1 to 21, 23 to 28